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1 Introduction 

Behavioural biometrics are a valuable tool in many security 
tasks that require identification or verification of an 
individual. Behavioural biometrics are often employed 
because they can be easily collected non-obtrusively and are 
particularly useful in situations that do not provide an 
opportunity for collection of stronger (more reliable) 
biometric data. We investigated strategy used while playing 
a game as a type of a behavioural biometric. The game  
of poker is used as an example of a game with a clearly 

identifiable player strategy. The profile produced for each 
player is used as the person’s behavioural-biometric profile. 

Our approach can be used by online casinos to detect  
a hacker who is using a stolen account on a game server or  
a player trying to cheat by using an AI bot in order to  
win more money. Both are currently big problems in  
the world of online gaming and a successful solution  
is beneficial not just from theoretical but also from a 
practical point of view. Advantages of the developed 
solution are listed below: 
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• no special hardware required 

• no noticeable enrolment period 

• provides continuous player verification 

• identifies user not the system or geographic location. 

2 System description 

Based on the idea of using strategy followed while playing  
a game as a type of a behavioural biometric we propose  
a complete system for player verification. First a player 
profile is generated either by data mining an existing 
database of poker hands or by observing a live game  
of poker. Next a similarity measure is obtained between the 
feature vector generated based on the recently collected 
player data and the data for the same player obtained  
in previous sessions. A score is generated indicating how 
similar the current style of play is to the historically shown 
style of play for a particular player. If a score is above  
a certain threshold, it might indicate that a different user 
from the one who has originally registered is using  
the account and so the administrator of the casino needs  
to be alerted to that fact. If the score is below some 
threshold, the system continues collecting and analysing  
the player data. 

As can be seen from Figure 1 using a previously 
generated database of poker hands does not provide an 
option of continuous monitoring and so is an inferior 
alternative, which might be valuable in terms of initial 
experimentation, but which must be replaced by live data 
collection for the completed product. 

Figure 1 A diagram of the developed system 

 

2.1 Data 

Data for poker related experiments could be obtained  
in several ways: by observing real games played by human 
opponents in casinos, home games and at online gambling 
sites or by utilising existing poker-hand databases. 

2.1.1 IRC poker dataset 

Long before online casinos became prevalent on the 
Internet, there exists the Internet Relay Chat (IRC) poker 
server. Michael Maurer developed a program he called  
the Observer that resided on the IRC poker channels  
and monitored and logged the details of every game  
it observed. This resulted in the collection of the more than 
10 million complete poker hands (from 1995 to 2001)  
that comprise the IRC Poker Database (Maurer, 2005).  

2.1.2 Data from observing human play 

Additional data for poker related experiments could  
be obtained by observing many real games played by human 
opponents in casinos, home games and at online gambling 
sites.  

Data from observing online human play. This is probably 
the best source of data since the games are multiple  
in number, stakes and quality of players. The data is same  
as the data potentially generated in the desired field  
of application of the final algorithm. The data can also be 
easily collected automatically by creating a simple observer 
bot or even easier collected by the online casino itself if  
it desires to do so, perhaps for security reasons. In fact  
most casinos already do collect some game data if not  
the complete information about every hand played. 

Data from observing off-line human play. Another 
alternative is to attempt to collect data from real brick  
and mortar casinos, home games and tournaments.  
This approach is interesting because many additional factors 
may be collected which are not available in an online setting 
and are generally referred to as tells. But this information  
is neither objective nor useful for our purposes since it  
will not be possible to obtain similar data while employing 
our algorithm online. Finally it is a daunting manual task  
to collect data from real life human play, which results  
in expensive and potentially full of errors set of statistics.  

3 Generation of synthetic profiles 

Many biometric technologies are still in their infancy and  
do not yet have large reliable data sets which are needed  
for further development of such systems. One solution to  
the problem of insufficient availability of training and 
testing biometric data is the creation of the so-called 
simulated or synthetic biometric data using sophisticated 
computer algorithms (Yanushkevich et al., 2004). 

While ideally we want all our biometric systems to  
be tested on real data to insure the highest standard  
of quality and system security is obtained it is not always 
possible for a variety of reasons. Testing a biometric system 
requires many thousands of samples in order to establish 
system’s false reject and False Accept Rates (FARs). 
Obtaining biometric data in sufficient quantity is a time 
consuming and expansive process. Volunteers quickly get 
bored with a repetitive task of biometric data collection  
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and paying people for their cooperation is often beyond  
the budget of many research centres. Also dealing with  
real biometric data brings up issues with privacy of 
individuals providing their data and with security of 
biometric databases (Sumi and Matsuyama, 2005). 

Synthetic data addresses many of the concerns presented 
above. Once a system for producing simulated data is 
developed it is fast and cheap to produce large quantities  
of high quality biometric data which adheres to statistical 
distributions desired by the investigator without any privacy 
or security concerns to worry about. Such data can be  
used for testing newly developed biometric systems, 
benchmarking well developed security systems, testing 
scalability of authentication systems or for certification  
of commercially available packages. Production of synthetic 
biometrics allows researchers to better understand 
individuality of biometric patterns and allows parametric 
sensitivities of algorithms to be investigated in greater  
detail (Ma et al., 2005; Makthal and Ross, 2005;  
Orlans et al., 2004). 

A number of approaches exist for the generation of the 
artificial biometric data. Most of them are concerned with 
the creation of a simulated image depicting a particular 
physical biometric such as a fingerprint, face or iris.  
The existing approaches can be grouped into the following 
categories: 

• distortion of an existing image to generate numerous 
similar images 

• combination of multiple images to produce a novel 
image with partial properties of all the seed images 

• generation of images based on physical models for the 
biometric in question. 

Because features of a strategic profile have meaning, unlike 
minutiae points of fingerprints or colours of iris, it is 
possible to apply a fourth methodology for creation of 
synthetic game-based behavioural biometrics, namely 
parameterised design. It may not make any sense to design a 
synthetic fingerprint with all the minutiae points located  
in just the left half of the fingerprint but it makes sense to 
have a strategic profile for a player who is only aggressive 
in the first two rounds of the game. A fifth and final  
option we are not really considering here is generation  
of a synthetic-behavioural-biometric based on purely 
random approach. Such simulated data would correspond  
to unrealistic strategies not encountered at real world  
poker tables and as such would be completely useless  
for our purposes of generating realistic artificial  
biometric data possessing all properties of the authentic 
samples. 

The first approach to the creation of the synthetic 
behavioural biometric we have implemented is based on 
taking an existing player profile and modifying it to make 
numerous additional profiles similar to the given one 
(Yampolskiy and Govindaraju, 2008). Poker is a game  
of high variance and so even by following the same exact 
strategy it is possible for a player to play a slightly different 

number of cards at every stage based on the actual cards 
being dealt to him. We have estimated poker variance  
for a reasonably large number of played hands to be around 
3%. By taking all the feature points in a given profile and 
replacing them with new randomly generated values in  
the range of +/−3% of the given ones we are able to obtain 
multiple artificial profiles for the same player which are 
representative of the authentic profiles which could be 
produced by the same player due to the degree of natural 
variance in the game of poker. Any resulting values outside 
of the range from 0% to 100% are changed to the closest 
values falling in the range. Obviously it is also possible  
to adjust the variance rate to accommodate different playing 
styles and types of poker games. An example of one profile 
generated in such a way based on a temporal-seed-profile 
from player Bob is shown in Table 1. 

Table 1 A sample profile generated from a seed profile 

Player name: Synthetic Bob                               Hands dealt: n/a 
 Pre-flop (%) Flop (%) Turn (%) River (%)
No. of hands 
played 

n/a n/a n/a n/a 

Folded 68.4 26.7 23.8 20.1 
Checked 5.7 52.3 51.8 53.8 
Called 21.3 32.1 28.2 33.4 
Raised 4.9 3.5 4.4 5.7 
Check-raised 2.2 2.9 2.0 2.7 
Re-raised 1 0.2 0.0 0.4 
All-in 1.5 3.4 4.9 39.5 

This methodology is best for generation of multiple profiles 
for the same individual which can be used for testing  
of verification or even identification abilities of strategy 
based behavioural biometric systems. 

Second approach to the generation of artificial 
behavioural biometric data we implemented is based  
on combining feature points from two or more different 
seed profiles. This can be done in two different ways either 
simply picking one of the profiles as providing a particular 
data point for the profile being created or taking average  
of the values in the seed profiles to serve as the new value. 
This methodology is similar to the crossover operations 
used in genetic algorithms for production of the next 
generation of solutions from the currently available 
distribution of genetic strings (Yampolskiy et al., 2004; 
Goldberg, 1989). 

In case of strategic profiles this approach leads to  
the production of profiles representing somewhat averaged 
strategies. For example, combining an overly aggressive  
and a passive profile results in a solid profile typical  
of many good players at low-level tables. This methodology 
is best for generation of multiple profiles needed to make 
sure our database is sufficiently large to make verification 
of particular individuals of interest a non-trivial task. It also  
works well for generation of novel strategic profiles not yet 
encountered during the collection of authentic data and so 
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insures diversity of strategies encountered by the biometric 
processing system. 

An approach corresponding to the generation of 
synthetic biometrics based on physical models with respect 
to poker strategies is achieved by creation of realistically 
behaving artificial poker players. It is up to the poker 
experts to develop multiple strategically interesting poker 
bots. Typically a number of basic strategies are used for the 
initial design and by adding some behavioural variation  
at particular stages of the game new strategies are 
introduced. Most popular basic profiles are Solid, Rock, 
Maniac, Fish, and Typical (Online, 2006). Once such 
players are created they are allowed to play against each 
other or against human opponents while the system 
generates corresponding strategy based behavioural profiles 
for them which also include the contextual information 
about the flop, player’s position and stages of the hand. 
Profiles produced in such a way show a very high degree of 
over time consistency as computerised players are not 
subject to psychological swings so typical of human players 
commonly referred to as going on tilt (Schoonmaker, 2005). 

Our implementation of poker bots was done using the 
statistical package called Online Hold’em Inspector version 
2.26d4 (Online, 2006). By specifying such conditions as 
tendency of our bots to bluff, slow play, check raise and 
their aggressiveness level as well as their pre-flop card 
selection we were able to generate numerous valid  
poker strategies. Validity of our poker bots was tested at 
low-stakes real-money online poker tables against  
human opponents where our bots consistently scored around 
three big bets per hour in profits (Yampolskiy and 
Govindaraju, 2008). Figures 2 and 3 demonstrate bot’s 
characteristics, which we were able to manipulate. 

Figure 2 Flop playing strategy menu 

 

By manipulating hundreds of variables associated with our 
bots playing strategy and combining them in numerous 
ways we were able to generate a multitude of realistically 
behaving poker players and as a result collected behavioural 
biometric data on all such strategies. Also by statistically 
analysing our bot’s strategy we were able to predict some 
characteristics of the bot’s behavioural profile as shown  
in Figure 4. 

Figure 3 Pre-flop hand selection strategy menu 

 

Figure 4 Estimates of a statistical profile for a bot’s strategy 

 

Finally, we get to an approach we call parameterised design. 
Because we are not generating a raw biometric image but 
rather a set of feature measurements we are able to declare 
with statistical parameters in which ranges we wish all 
feature points to reside. This is a somewhat inverted 
approach from the one utilising artificially intelligent poker 
playing programs. Instead of designing a poker strategy 
which can be observed to produce a statistical profile 
describing player’s behaviour we are directly generating the 
statistical feature vector which is parameterised with the 
intention of representing a valid game strategy. This is a less 
tedious approach as instead of prescribing particular actions 
to each one of the thousands of possible situations in a game 
of poker we only have to specify some general trends  
such as aggression and card selection at different phases of 
the game. 

Generally a style of a poker player is represented as a 
point on a 2-dimensional styles grid. The y dimension 
represents the tight/loose score and the x dimension stands 
for the passive/aggressive behaviour of the player. Players 
are measured on each dimension from 1 to 9 (Schoonmaker, 
2005). This gives us up to 81 different playing styles which 
is sufficient for production of baseline profiles for testing  
of verification systems. The resulting baseline profiles  
can later be used to generate additional profiles using 
methods presented above. 

Our algorithm takes an (x, y) pair and produces a 
behavioural profile which confirms to a statistically 
predicted action frequency distribution for this particular 
playing style. For example a loose and passive player 
commonly refereed to as a ‘Calling Station’ is represented 
by a point (9, 1) on a playing styles grid and would 
correspond to a behavioural profile which looks at over 89% 
of flops and bets or raises less than 11% of the time 
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basically only if he holds the absolutely best cards at the 
moment. By expanding those ideas to all four stages of the 
game (pre-flop, flop, turn, river) we are able to produce 
behavioural profiles corresponding to different styles of 
play. We can see that each grid value controls about 11%  
of style space and so different styles are very easy to 
distinguish using statistical analyser as the variance in the 
game of poker is around 3%. 

This approach provides a way to control the properties 
of the behavioural biometric profile via specified 
parameters. This is particularly useful if we wish to run a 
controlled experiment, for example seeing how our system 
performs in a large field of tight/aggressive players such  
as found at high limit games for which actual testing of the 
system may be beyond the means for many researchers. 

3.1 Statistical measure of player’s style 

If we are going to study the game of poker and  
more particularly the style of our opponents scientifically, 
we will need to quantify and statistically analyse our 
opponents’ behaviour. In order to do so we propose and 
define a number of variables associated with actions of our 
opponents. The parameters chosen are selected because they 
can be easily tracked by relatively straightforward 
methodologies and more importantly they are believed  
to accurately describe the long-term model of behaviour of 
our opponents (Software, 2005; Poker-Edge.com, 2006; 
Brandt, 2005). 

The following list of variables represents individual 
values within each feature vector. Combining individual 
values in the feature vector in varying ways may generate 
additional descriptors. Some important statistics such as the 
total number of hands played are kept for the internal 
bookkeeping but are not a part of the feature vector. 

Fold percentage of times this particular player has 
decided to give up his claims to the pot. 

Check percentage of times this particular player has 
decided not to invest any additional money into the pot. 

Call percentage of times this particular player has paid 
an amount equivalent to the raise by some other player 
ahead in position in order to keep playing this hand. 

Check-raise percentage of times a player has checked 
allowing another player to put some money into the pot,  
just to come over the top and raise the pot after the action 
gets back to him. 

Raise percentage of times this particular player has 
chosen to raise the stakes. 

Re-raise percentage of times this particular player has 
chosen to re-raise somebody-else’s raise. This would 
include a re-re-raise and re-re-re-raise so on. 

All-in percentage of times this particular player has 
chosen to invest all his money in the current hand. 

A combination of such statistical variables taken 
together produces a feature vector which is used by a pattern 
recognition algorithm to determine if a current profile  
is consistent with that previously seen one from this 
particular player or if a possible intruder has taken the 
control of the account. 

Descriptive accuracy of a behavioural profile can be 
greatly increased if additional information is included.  
We have utilised a profile structure which separates player’s 
actions into the four stages of the hand, making temporal 
information available, and as a result, description of player’s 
strategy more meaningful. Table 2 is an example of such 
temporal profile. 

Table 2 Temporal strategy profile  

Player name: Bob                                             Hands dealt: 224 

 Pre-flop Flop Turn River 
No. of hands played 224 68 46 33 
Folded 67% 28% 24% 18% 
Checked 7% 54% 52% 52% 
Called 21% 32% 28% 33% 
Raised 4% 1% 4% 6% 
Check-raised 0% 4% 0% 0% 
Re-raised 0% 1% 0% 0% 
All-in 1% 3% 4% 39% 

Source: Yampolskiy and Govindaraju 
 (2006a) 

Profiles can be further enhanced with the inclusion  
of spatial information, essentially making a separate profile 
for each of the ten positions a player can have around  
the table. Such profiles clearly demonstrate dependence  
of player’s strategy on position and are shown in Table 3. 

Table 3 Spatial strategy profile 

Action Small Big 3rd 4th 5th 6th 7th 8th 9th Dealer

Folded 77 73 71 69 67 64 61 59 57 51 
Checked 55 53 50 49 48 44 41 39 37 34 
Called 14 16 19 22 26 29 33 37 43 53 
Raised 2 3 4 6 8 11 13 15 17 20 
Check-raised 31 28 23 19 17 15 12 9 6 4 
Re-raised 0 1 2 4 6 10 14 18 25 30 
All-in 37 39 41 43 47 51 55 59 62 65 

Finally with the addition of contextual information about the 
cards revealed at the flop divided into seven flop types 
described in the poker literature (as shown in Table 4) 
(Badizadegan, 1999) we have a 3D information space, 
which for every stage of the game, every position and  
every flop provides frequency counts of player’s actions  
as illustrated in Figures 5 and 6. 

Dimensionality of such a profile could be extremely 
high, compared to the basic profiles (Yampolskiy and 
Govindaraju, 2006b). Table 5 summarises different possible 
profile types which can be used with strategy based 
behavioural biometrics along with the information they 
include and lists the profile’s dimensionality. Ideally any 
similarity measure function we propose to utilise should be 
flexible enough to handle any of the presented profile types 
(Yampolskiy and Govindaraju, 2006a). 
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Figure 5 Poker table with the flow of information 

 

Figure 6 3D profile structure 

 

Table 4 Flop types and number of variations for each type 

Flop type 
Number of 
variations Example 

Three cards of the 
same rank 

1 
 

Pair plus a 0–3 
gapped card 

2 
 

Pair plus a 4+ gapped 
card 

2  
Three cards 0–2 gaps 
apart 

3  
Two cards 0–3 
gapped and a third 
card 4+ 

3 
 

Three cards 3–6 
gapped 

3 
 

Three cards with 4+ 
gaps between all 
cards 

3 
 

Source: Badizadegan (1999) 

As the amount of contextual information increases so does 
the dimensionality of the behavioural profile. This results  
in what is known as the ‘curse of dimensionality’.  
The matching algorithm needs a large number of feature 
measurements to account for all the different possibilities of 
potential situations. The complexity of a high-dimensional 
space increases exponentially with the number of features. 
This large collection of features forms a high-dimensional 
space, in which it is very difficult to find the best decision 
boundary (Baggenstoss, 2004). One of the similarity 
measure functions, 2D style measure, examined in this 
paper is specifically designed to avoid the complications 
presented by the curse of dimensionality. 

Table 5 Profile types by information included and vector 
dimensionality 

Profile type Information included Profile dimensionality 
Basic Frequency counts for 

actions 
7 

Temporal Frequency counts for 
actions at different  
stages of the game 

7 × 4 = 28 

Contextual Frequency counts for 
actions with respect  
to the flop type 

7 × 7 = 49 

Spatial Frequency counts  
for actions at different 
positions around the table 

7 × 0 = 70 

Temporal-
spatial 

Frequency counts for 
actions with respect to 
the stage of the game  
and relative position 
around the table 

7 × 10 × 4 = 280 

Temporal-
contextual-
spatial 

Frequency counts for 
actions with respect to 
the stage of the game and 
relative position around 
the table and the flop 

7 × 10 × 4 + 3 × 7 × 7 = 427

3.2 Similarity measure 

When a new biometric data sample is presented to a security 
system, it is necessary to measure how closely it resembles 
template data (Yampolskiy and Govindaraju, 2006a).  
A good similarity measure takes into account statistical 
characteristics of the data distribution assuming enough  
data is available to determine such properties (Lee and  
Park, 2003). Alternatively expert knowledge about the data 
can be used to optimise a similarity measure function,  
for example a weighted Euclidean distance function can  
be developed if it is known that certain features are more 
valuable then others. 

3.2.1 Euclidean distance 

One of the most popular similarity distance functions is  
the Euclidean distance. It is just the square root of the  
sum of the squared distance between the element of the  
n-dimensional vectors (xi, yi) (Sturn, 2000): 

2

1

( ) .
n

E i i
i

d x y
=

= −∑  

Euclidean distance is variant to both adding and multiplying 
all elements of a vector by a constant factor. It is also 
variant to the dimensionality of the vectors, for example  
if missing values reduce the dimension of certain vectors 
produced output will change. In general the value of 
Euclidean similarity measure may fall in the range  
from zero indicating a perfect match to sqrt(n) (where 
normalised n-dimensional vector is used) indicating 
maximum dissimilarity of playing styles. Obviously both of 
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those extreme cases do not occur in real life and represent 
only theoretical possibilities not related to any viable 
playing style. In experiments with real life data Euclidean 
Similarity measure is always in between the two extremes 
(Yampolskiy and Govindaraju, 2006a, 2006b). 

3.2.2 Mahalanobis distance 

Mahalanobis distance is defined as (Yampolskiy and 
Govindaraju, 2006a):  

1( ) ( )T
Md x xµ µ−= − −∑  

with mean 1 2 3( , , ,..., )nµ µ µ µ µ=  and covariance matrix Σ 
for a multivariate vector 1 2 3( , , ,..., )nx x x x x= . Mahalanobis 
distance can also be defined as dissimilarity measure 
between two random vectors X and Y of the same 
distribution with the covariance matrix Σ: 

1( ) ( ).T
M i i i id x y x y−= − −∑  

If the covariance matrix is the identity matrix then it is  
the same as Euclidean distance. If the covariance matrix  
is diagonal, then it is called normalised Euclidean distance: 

2

2
1

( )
,

n
i i

NE
ii

x y
d

σ=

−
= ∑  

where σi is the standard deviation of the xi over the sample 
set. Mahalanobis distance is not dependent on the scale  
of measurements (Wikipedia, 2006). 

3.2.3 Manhattan distance 

The Manhattan distance between two points, in a Euclidean 
space with fixed Cartesian coordinate system, is the sum  
of the lengths of the projections of the line segment between 
the points onto the coordinate axes. In other terms, 
Manhattan distance is the absolute differences of the 
elements of the two vectors (xi, yi) (Sturn, 2000; 
Yampolskiy and Govindaraju, 2006a) 

Man
1

| |.
n

i

d x y
=

= −∑  

3.2.4 Weighted Euclidean distance 

Performance of the Euclidean similarity measure function 
can be greatly improved if an expert knowledge about the 
nature of the data is available. If it is known that some 
values in the feature vector hold more discriminatory 
information with respect to others, it is possible to assign  
proportionally higher weights to such vector components 
and as a result influence the final outcome of the similarity 
function (Yampolskiy and Govindaraju, 2006a). 
 
 
 

In the case of the poker domain, it is believed by the 
experts in the field, that the style of the poker player is 
particularly evident in the pre-flop card selection. Before the 
flop cards are revealed the player has relatively little 
information to analyse and often acts based on a small set  
of rules, which dictate how hands should be played based  
on the hand itself, position of the player and betting action 
so far observed. Application of such rules is relatively  
long-term consistent by most players and so has higher 
discrimination value as compared to action at the later 
rounds in the game. In such later rounds additional 
information about communal cards and opponent reading 
skills become more important than pre-established rules  
and so are more situation dependent (Yampolskiy and 
Govindaraju, 2006a). 

3.2.5 2D style measure 

This is a similarity measure approach used by human poker 
experts to classify and compare poker players and is 
included here to investigate feasibility of using such 
approaches by computerised systems. Generally a style of  
a poker player is represented as a point on a 2-dimensional 
styles grid shown in Figure 7. The y dimension represents 
the tight/loose score and the x dimension stands for the 
passive/aggressive behaviour of the player. Players  
are measured on each dimension from 1 to 9 (Schoonmaker, 
2005). For example a loose and passive player, commonly 
known as a ‘Calling Station’, is represented by a point (9, 1) 
on a playing styles grid and would correspond to a 
behavioural profile which looks at over 89% of flops and 
bets or raises less than 11% of the time basically only if  
he holds the absolutely best cards at the moment. This gives 
us only 81 different playing styles, however mathematically 
we are not restricted to only integer values for expressing 
the players’ style and so in theory the number of styles  
can be infinite. 

The proposed 2D style measure only takes into account 
the pre-flop selectiveness of the player and the overall 
aggressiveness expressed in raising, re-raising and going  
all-in. The two style descriptors chosen (tightness and 
aggressiveness) are selected because they are least 
dependent on elements of chance such as the cards revealed 
by the board and the playing style of the opposing players. 
The proposed descriptors are computationally easy to 
obtain. 

Tightness = % of cards folded pre-flop 

Aggressiveness = average(% raised + % check raised  
                              + % re-raised + % all-in). 

Aggressiveness value is determined over all stages of  
the hand, all possible positions and flop types depending  
on the type of the behavioural profile used to represent the 
player’s strategy and the availability of the contextual 
information. 
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Figure 7 The 2-dimenstinal styles 

 
Source: Schoonmaker (2005) 

4 Experiments 

In this section, we present results of our experiments with 
user verification and identification as well as our approach 
to validation of synthetic poker data and results of a 
spoofing attack on the developed system. 

4.1 User verification (Euclidean on temporal 
profiles) 

In a databank of 30 player signatures each one was 
compared with one profile taken from the same player as the 
one who generated the original signature and with another 
profile taken from a randomly chosen player. Giving us  
an experimental set up in which intruders and legitimate 
users are equal in number. Using Euclidean similarity 
measure and a threshold of 75 the original algorithm has 
positively verified 46.66% (28) users. The FAR was 13.33% 
(8 users) and False Reject Rate (FRR) was only 8.33%  
(5 users). This gives us player verification with overall 
78.33% accuracy. 

We hoped to obtain some improvement in performance 
of our algorithm as a result of including slow-playing as  
a part of the feature vector. But possibly because  
slow-playing is an advanced technique which is not 
practiced by many players (and even those who do practice 
it only rarely get the best possible hand to do so), only a 
small improvement in performance was obtained over 
previous result (Yampolskiy and Govindaraju, 2006a).  
This outcome might also be a result of relatively small data 
set we were working with. It is possible that including  
other advanced features such as bluffing in addition to  
slow-playing will produce better results. Using Euclidean 
measure and a threshold of 75 the algorithm has achieved an 
accuracy of 80.0%. The FAR was 11.66% (7 users) and 
FRR was only 8.33% (5 users). 
 
 

4.2 Intruder identification (Euclidean on temporal 
profiles) 

Once the difference between an expected user’s behaviour 
and the observed behaviour goes over a pre-established 
threshold a network administrator is notified that an attack 
may be taking place. While many such occurrences are  
just false alarms, some do represent accurately detected 
intrusions. If the network administrator does believe that a 
real attack took place, he is interested in finding out the 
identity of the perpetrator. In some instances it may be the 
case that someone from within the organisation performed 
an attack, and so the intruder himself has a legitimate 
account on the same network, probably with fewer 
privileges (funds) as compared to the compromised account. 
We investigated the feasibility of determining intruder’s 
identity by comparing the signature for detected deviant 
behaviour against the database of behavioural signatures 
from all the users in the system. 

For this experiment we used a databank of 30 players. 
Each player’s record contains an original signature from the 
enrolment period and a second signature from the testing 
period. Each testing signature was compared against  
all original signatures in the databank, for a total of  
30 comparisons each. The highest matching profile with 
respect to the similarity measure was recorded as either 
belonging to the same player (a successful identification)  
or to a different player (a false identification). From the total 
of 30 highest matching profiles five were correctly 
identified and 25 were false matches. This gives us intruder 
identification with overall 16.66% accuracy. These results 
are obviously below acceptable industry standards but 
clearly indicate feasibility of behaviour-based intruder 
identification. This methodology might give us a certain 
edge in the fight for network security, but also explains  
why behavioural biometrics are not typically used for user 
identification but only for verification. 

4.3 Similarity measure function experiments 

Experiments were conducted with a 100 authentic  
user profiles and a 100 impostor profiles used in each.  
Three different experiments were conducted; in each one a 
different type of behavioural profile representation  
was used. Specifically a 28-dimensional temporal profile,  
a 280-dimensional temporal-spatial profile and a  
427-dimensional temporal-spatial-contextual profile were 
chosen as this allowed us to observe the influence of 
increasing the amount of environmental information 
available to the security system on systems performance. 
We also had an opportunity to observe the effect of the 
curse of dimensionality with respect to the performance  
of our similarity measure functions. 

For each similarity function a continuously varying 
threshold curve was generated demonstrating the 
relationship between FAR and a FRR. Changing threshold  
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trades the FAR off against the FRR, so the error rates can be 
adjusted according to the requirements of the security 
application (Lee and Park, 2003, October). For our 
experiments the value of the threshold which makes FRR 
equal to FAR was selected for each similarity measure 
function and is used as the representative accuracy of the 
utilised similarity measure function. 

We compared three general similarity measure functions 
(Euclidean, Mahalanobis, Manhattan) with two domain 
specific functions developed by us (Weighted Euclidean,  
2D Style). The weighted Euclidean distance measure we 
have utilised in our experiments assigns a weight of 3 to all 
pre-flop features of the vector and weight of 1 to all other 
features. The weight of 3 has been experimentally 
established by trial and error of different weights in the 
range from 1 to 10.  The weight is incorporated into the 
formula by dividing the difference between corresponding 
values in the two feature vectors by the selected weight. 

The 2D style measure approach was designed to 
counteract the problems with the ‘curse of dimensionality’ 
which become particularly taxing with the use of contextual 
information within the profile. Tightness value is easy to 
compute as it is simply the average percentage of cards 
folded pre-flop from all possible positions. Aggressiveness 
value is slightly more involved but is essentially the average 
percentage of raised, check raised, re-raised and all  
in actions from all possible positions at all stages of the 
game and for each possibly flop type. 

As can be seen from Table 6 general similarity measure 
functions (Euclidean, Mahalanobis and Manhattan) showed 
a very similar performance, with Mahalanobis distance 
being slightly inferior to Euclidean and Manhattan distances 
which showed identical performance of 12% Equal Error 
Rate (EER). Best performance was shown by a task specific 
Weighted Euclidean distance which had a 10% EER.  
2D Style measure performed poorly in case of temporal 
profiles, probably because some of the discriminatory power 
is lost in the averaging process. 

Table 6 Verification results using temporal profiles 

Similarity measure Equal Error Rate (%) 

Euclidean distance 12 
Mahalanobis distance 13 
Manhattan distance 12 
Weighted Euclidean distance 10 
2D style measure 14 

A great improvement in performance of the strategy based 
behavioural biometric system was observed with the 
inclusion of spatial information into the profiles as 
demonstrated in Table 7. Once again the Weighted 
Euclidean distance function was the best matching 
algorithm obtaining 7% EER with general similarity 
measure functions performing in the range of 9–10% EER. 
However, performance of the 2D style measure actually 
became worse to the level of 25% EER. 

Table 7 Verification results using temporal-spatial profiles 

Similarity measure Equal Error Rate (%) 

Euclidean distance 9 
Mahalanobis distance 10 
Manhattan distance 9 
Weighted Euclidean distance 7 
2D style measure 25 

Improvement in the performance of most similarity measure 
functions can be explained by a more refined capture of the 
player’s strategy associated with inclusion of information 
about the spatial location of the player. Decreased 
performance of the 2D style matcher probably resulted from 
the influence of zero-value variables on the overall profile 
average. Zero-value variables are a consequence of not 
having enough data points in a high-dimensionality profile 
such as 280-dimensional spatial-temporal profile. 

As can be seen from Table 8 with the inclusion of the 
contextual information the dimensionality of behavioural 
profile has ballooned to 427D and the influence of the 
‘curse of dimensionality’ became apparent. Performance of 
all similarity measures has significantly decreased, with that 
of 2D style measure to almost the point of random guessing. 
With such a high-dimensionality-behavioural-profile the 
number of zero-value variables becomes overwhelming as 
the amount of time needed to collect sufficient data is 
unreasonable for any real-life security system. 

Table 8 Verification using temporal-spatial-contextual 
profiles 

Similarity measure Equal Error Rate (%) 

Euclidean distance 33 
Mahalanobis distance 36 
Manhattan distance 33 
Weighted Euclidean distance 29 
2D style measure 46 

4.4 Validation of synthetic data 

We have also performed testing using our biometric 
verification system which uses a Weighted Euclidean 
distance measure with an experimentally determined 
optimal threshold (Yampolskiy and Govindaraju, 2007).  
For each experiment 100 artificial baseline player profiles 
have been generated using one of the developed 
methodologies along with a 100 of testing profiles. In each 
experiment the number of legitimate users and imposters 
was equal with no overlap between testing and baseline 
profiles. Imposter profiles were randomly chosen from 
profiles unrelated to the baseline one. 

Table 9 compares EER obtained on artificial data with 
that reported from the original experiments on genuine data 
(Yampolskiy and Govindaraju, 2008). As can be seen, with 
some data generation methodologies, we have obtained  
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accuracy levels statistically indistinguishable from those 
originally produced by the system on genuine data.  
In particular, approaches based on modifying seed profile, 
parameterised design and observation of AI players showed 
the best results. Also the ROC curves of those methods  
were an almost exact match with the ones from the 
experiments on genuine data. This leads us to believe that 
both intra-class and inter-class variation of strategy-based 
profiles is well simulated with those approaches. 

Table 9 EER comparison for genuine and synthetic data 

Data type Equal Error Rate (%) 
Genuine data 7 
Modified seed profile 8 
Multi-profile crossover 19 
AI players 7 
Parameterised design 9 

Crossover-based approach did not show good results, which 
can be explained by the random nature in which multiple 
profiles are combined during the crossover process. 

4.5 Spoofing experiments 

Approaches to spoofing behavioural biometrics are similar 
to those for physical biometrics but with some domain 
specific variability. Replay attacks are very popular since  
it is easy to record an individual’s voice or copy a signature. 
Human mimicking or forgery is also a very powerful 
technique with experts consistently breaching security  
of signature-based or voice-based authentication systems. 

Additionally in the domain of behavioural biometrics  
it is possible for a parameterised computer generated  
model to perform the mimicking/forgery of the biometric 
sample. Such computer produced models of behaviour 
parameterised with observed target user data steadily 
improve in their performance. 

In order to create an artificial poker player with  
the strategy of a particular user a number of steps need to be 
followed. First a long term statistical profile for a large 
number of players needs to be obtained. We have written 
special software which observes the game and records every 
player’s action in an individual behavioural profile. 

Alternatively this can be easily accomplished as services 
exist which sell such information for a fee, examples  
being Poker-Edge.com (2006) and pokerprophecy.com 
(Pokerprophecy, 2006). These companies have special 
purpose computers monitoring online casinos around the 
clock recording every hand of poker played along with 
actions of individual players and financial outcome.  
By analysing statistical data provided by poker-edge.com 
we were able to reverse engineer the strategy employed  
by different human poker players. Table 10 demonstrates 
the sample of statistics collected by poker-edge.com  
along side the analysis of usefulness for those strategy 
descriptors. 
 

Table 10 Description of key statistics 

Statistic Description Analysis 

VP$IP The percent of hands a 
player voluntarily puts 
money into the pot 
(PreFlop). Small blind 
completions count, Big 
Blind checks do not 
count. Roughly PreFlop 
Call%+Raise% 

This stat is the number one 
indicator for how loose or 
tight a player is. Higher 
than 33% loose, and lower 
than 18% as tight 

PreFlop 
raise  

The percent of time a 
player raises pre flop 

PreFlop 
Aggression/Passiveness.  
5% is a median. The higher 
a player is above 5% the 
more aggressive, and the 
lower below 5%, the more 
passive 

PostFlop 
aggression  

The player’s combined 
aggression rating for the 
Flop, Turn and River. 
(Bet% + Raise%)/Call% 

1.5 is a median for 
PostFlop Aggression. 
Players that are much 
higher than this are very 
aggressive, and players that 
are much lower are very 
passive 

Flops seen  The percent of hands a 
player sees the Flop. 
(FLseen/HandsPlayed) 
*100 

Another indicator for 
PreFlop tightness/looseness

Turns seen  The percent of hands a 
player sees the Turn. 
(TUseen/HandsPlayed) 
*100  

An indicator for Flop 
tightness/looseness.  

Rivers seen The percent of hands a 
player sees the river. 
(RIseen/HandsPlayed) 
*100 

An indicator for Turn 
tightness/looseness 

Showd-
owns seen  

The percent of hands a 
player sees a showdown. 
(SDseen/HandsPlayed) 
*100 

An indicator for River 
tightness/looseness 

Source: Poker-Edge.com (2006) 

A target player’s percent of hands for which he voluntarily 
puts money into the pot is one of best indicators as to what 
type of player he is. By interpreting this number it can be 
determined how tight or loose the player is, and what types 
of cards he is likely to play. To get an idea of what types of 
hands correspond to what percentage level we can utilise 
Table 11. 

A player’s strategy can be reversed engineered from 
statistical observations. We will use an example from  
poker-edge.com’s statistical analysis page. Suppose  
we have a player with VP$IP of 18%, and a PreFlop Raise 
of 3.5%. To make 18% for VP$IP, this player is likely 
playing Big Pocket Pairs, Big Cards, Other Broadway  
Cards (suited), and half of the Other Broadway Cards 
(unsuited). If we add the percentages together, we get 
2.26 + 6.03 + 1.51 + 2.26 = 12.06%. Assuming this player  
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calls about half of the small blinds, that adds another 5%. 
We arrive at 17.06% which is very close to his VP$IP  
of 18%. His PreFlop Raise of 3.5% indicates that  
he is probably only raising Big Pockets, and AK  
(Poker-Edge.com, 2006). 

Table 11 Pre-flop indicators analysed 

Group Hands 
Number of 

Combinations 
Percentage 

of seen 

Big pocket pairs AA, KK, QQ, JJ, 
TT 

6 + 6 + 6 + 6 + 6 
 = 30 2.26 

Big cards AK, AQ, AJ, 
KQ, AT 

16 + 16 + 16 + 16 
+ 16 = 80 6.03 

Other broadway 
cards (suited) 

KJs, KTs, QJs, 
QTs, JTs 

4 + 4 + 4 + 4 + 4 
 = 20 1.51 

Other broadway 
cards (unsuited) 

KJ, KT, QJ, QT, 
JT 

12 + 12 + 12 + 12 
+ 12 = 60 4.52 

Mid pocket pairs 99, 88, 77, 66 6 + 6 + 6 + 6 = 24 1.81 
A–x suited A9s, A8s, A7s, 

A6s, A5s, A4s, 
A3s, A2s 

4 + 4 + 4 + 4 + 4 
 + 4 + 4 + 4 = 32 2.41 

Suited 
connectors 

T9s, 98s, 87s, 
76s, 65s 

4 + 4 + 4 + 4  
+ 4 = 20 1.51 

Low pocket pairs 55, 44, 33, 22 6 + 6 + 6 + 6 = 24 1.81 
A–x (not suited) A9, A8, A7, A6, 

A5, A4, A3, A2 

12 + 12 + 12 + 12 
+12 + 12 + 12 

 + 12 = 96 
7.24 

Small blind calls N/A N/A 10.0 

Source: Poker-Edge.com (2006) 

After obtaining statistical measurements of the player’s 
style and performing analysis similar to the one just 
described we were able to obtain information sufficient  
to program an artificial poker player with a strategy similar 
to that used by the target player. For each human player  
we had two statistical profiles collected from separate game 
sets. One was used for training artificial player and the other 
was used for verification experiments. The two data sets 
were completely different and had no overlap of any kind.  

Our implementation of poker bots was once again done 
using the statistical package known as Online Hold’em 
Inspector (Online, 2006). We were able to generate a set  
of 50 artificially intelligent poker players with observable 
actions mimicking those of human poker players 
participating in our study.  

Because we have adjusted each artificial poker player  
to act just like its human counterpart the resulting statistical 
profiles look almost identical to a human eye. We have 
essentially stolen the behavioural identity of our human 
poker players and have given it to artificially intelligent 
programs to mimic. In other words we have obtained a set 
of parameters for a strategic behaviour and have passed it  
on to a generative model to synthesise the desired 
behaviour. Not surprisingly we have obtained very good 
results for our verification experiments. 
 

To get the desired statistical profiles from artificially 
intelligent poker players we had them play against each 
other for a minimum of 10,000 poker hands, which  
is probably equivalent to 100 of hours of human play.  
This was done so we could obtain the long term statistically 
consistent behavioural profiles. With a set of 50 genuine 
players and 50 spoofed profiles we performed 100 
verification comparisons. 

We used a decision threshold obtained in finding  
the best possible FAR on true identity and random  
(non-spoofed) impostor tests (Yampolskiy, 2006; 
Yampolskiy and Govindaraju, 2006a, 2007). Similarity  
of each artificial profile was compared to that of a human 
profile it was modelled after and against another human 
profile which was randomly chosen from the set. All 50 
artificial profiles were positively verified as profiles of 
target users they were spoofing, giving us 100% FAR if  
we keep in mind that we are comparing profiles from a 
human and a bot. Five profiles were incorrectly positively 
verified than compared to a randomly chosen human profile. 
This can be explained by a significant degree of similarity 
between playing styles of some people. The system used in 
the experiment gives a FRR of about 8% if only real human 
profiles are submitted. Our experiments show that  
spoofing behavioural biometrics is a definite possibility 
(Yampolskiy, 2008). 

Our experiments show that with respect to  
strategy-based biometrics it is possible to secretly observe 
the target user during play, generate a statistical profile of 
his actions and train a behaviour generating model to mimic 
target’s behaviour. This is equivalent to stealing of the 
individual’s behavioural identity and some measures need to 
be taken to prevent this from happening, particularly as 
similar approach can be used in domains beyond game 
networks. 

5 Conclusions 

A number of conclusions can be drawn from the results  
of our experiments. First the poker player style measure 
used by human experts, 2D style measure, is not well suited 
for use in behavioural biometric systems. It is not  
capable of coping with insufficient amount of data in  
high-dimensionality behavioural profiles and is really only 
suitable for describing the four basic types of poker players 
encountered in the poker literature (Schoonmaker, 2005). 
Regardless of the type of profile representation used in  
the experiments it was the worst performing similarity 
measure outperformed even by the general similarity 
measure functions.  

Examined general similarity measure functions showed 
an acceptable profile verification performance with 
Euclidean and Manhattan distances being indistinguishable 
from each other in terms of their accuracy. Mahalanobis 
distance function performed slightly worse possibly as a 
result of the normalisation procedure which took into  
 
 



40 R.V. Yampolskiy and V. Govindaraju  

account variance of the data in each profile. Since the 
degree of variance in each user profile is different it is 
possibly that normalisation was not evenly distributed and 
so produced a slight decrease in the performance of  
this general similarity measure function.  

Customised weighted Euclidean measure function 
specifically designed for the domain of poker-based 
behavioural profiles showed the best performance on  
all types of data representation. Heavier consideration for 
pre-flop player’s actions allowed this similarity measure 
function to pick out the fundamental tendencies of the 
player’s strategy and as a result improve algorithms 
verification accuracy to as low as the 7% EER for the 
behavioural profiles enhanced with temporal and spatial 
information (Yampolskiy and Govindaraju, 2006a). 

The use of biometric technologies is growing at an 
increasing rate. In order to properly test such systems  
we need a consistent supply of readily available biometric 
data. Synthetic data generation provides a time and  
cost effective way of obtaining benchmark and test data  
not just for biometric systems but also for security and 
intrusion detection systems in general (Barse et al., 2003; 
Chinchani et al., 2004; Garg et al., 2006; Kayacik  
and Zincir-Heywood, 2005; Lundin et al., 2002; Debar  
et al., 1998; Rossey et al., 2002). 

Our spoofing experiments demonstrate that with respect 
to game-strategy biometrics it is possible to secretly and 
automatically monitor the target user during play in an 
online casino, generate an accurate statistical profile of  
his actions and train an artificially intelligent poker  
playing program to mimic target player’s behaviour. This is 
equivalent to stealing of the individual’s behavioural online 
identity and is a matter of serious concern for both privacy 
advocates and security specialists. 
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