
358 Int. J. Bio-Inspired Computation, Vol. 3, No. 6, 2011 

Copyright © 2011 Inderscience Enterprises Ltd. 

Wisdom of artificial crowds algorithm for solving 
NP-hard problems 

Roman V. Yampolskiy* 
Duthie Center for Engineering, 215, 
Speed School of Engineering, 
University of Louisville, 
Louisville, KY 40292, USA 
E-mail: roman.yampolskiy@louisville.edu 
*Corresponding author 

Ahmed EL-Barkouky 
Electrical and Computer Engineering, 
Speed School of Engineering, 
University of Louisville, 
Louisville, KY 40292, USA 
E-mail: arelba01@louisville.edu 

Abstract: The paper describes a novel algorithm, inspired by the phenomenon of wisdom of 
crowds, for solving instances of NP-hard problems. The proposed approach achieves superior 
performance compared to the genetic algorithm-based approach and requires modest 
computational resources. On average, a 6%–9% improvement in quality of solutions has been 
observed. 

Keywords: knapsack problem; KP; NP-complete; optimisation; travelling salesman problem; 
TSP; wisdom of artificial crowds; WoAC. 

Reference to this paper should be made as follows: Yampolskiy, R.V. and EL-Barkouky, A. 
(2011) ‘Wisdom of artificial crowds algorithm for solving NP-hard problems’, Int. J.  
Bio-Inspired Computation, Vol. 3, No. 6, pp.358–369. 

Biographical notes: Roman V. Yampolskiy received his PhD in Computer Science and 
Engineering from the University at Buffalo. He was a recipient of a four-year NSF Fellowship. 
Before his doctoral studies, he received his BS/MS (High Honours) combined  
degree in Computer Science from Rochester Institute of Technology. In 2008, he accepted an 
Assistant Professor position at the Speed School of Engineering, University of Louisville. His 
main areas of interest are behavioural biometrics, computer forensics, robot authentication and 
pattern recognition. He is the author of over 50 publications including multiple journal articles 
and books. 

Ahmed EL-Barkouky is currently a PhD student at the ECE Department, University of 
Louisville, USA. He received his BSc degree from the Electrical Engineering Department, 
Ainshams University, Egypt in 2002 and his MSc degree from the Engineering Mathematics 
Department, Ainshams University, Egypt in 2009. His research domain is artificial intelligence 
and computer vision. 

 

1 Introduction 

NP-hard problems are believed to require exponential  
time for exact solutions (Karp, 1972). Since it is not  
feasible to practically solve such problems using classical 
computer architectures, optimal methods have been  
replaced with approximation algorithms that usually need 
polynomial time to provide reasonably good solutions 
(Rabanal et al., 2007). 

Heuristic algorithms capable of addressing diverse 
problems are known as metaheuristics. Such algorithms are 

computational methods that attempt to find a close 
approximation to an optimal solution by iteratively trying to 
improve a candidate answer with regard to a given measure 
of quality. Metaheuristic algorithms do not make any 
assumptions about the problem being optimised and are 
capable of searching very large spaces of potential 
solutions. Unfortunately, metaheuristic algorithms are 
unlikely to arrive at an optimal solution for the majority of 
large real world problems. However, research continues to 
find asymptotically better metaheuristic algorithms for 
specific problems. 
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Most metaheuristic algorithms in optimisation and 
search have been modelled on processes observed in 
biological systems: genetic algorithms (GAs) (Goldberg, 
1989), genetic programming (GP) (Koza, 1990), cellular 
automata (CA) (Wolfram, 2002), artificial neural networks 
(ANN), artificial immune system (AIS) (Farmer et al., 
1986). Expanding on this trend of bio-inspired solutions a 
large number of animal or plant behaviour-based algorithms 
have been proposed in recent years: ant colony optimisation 
(ACO) (Dorigo et al., 2006), bee colony optimisation 
(BCO) (Pham et al., 2006), bacterial foraging optimisation 
(BFO) (Passino, 2002), glow-worm swarm optimisation 
(GSO) (Krishnanand and Ghose, 2005), firefly algorithm 
(FA) (Yang, 2009), cuckoo search (CS) (Yang and Deb, 
2009), flocking birds (FB) (Reynolds, 1987), harmony 
search (HS) (Geem et al., 2001), monkey search (MS) 
(Mucherino and Seref, 2007) and invasive weed 
optimisation (IWO) (Mehrabian and Lucas, 2006). In this 
paper, we propose a novel algorithm modelled on the 
natural phenomenon known as the wisdom of crowds 
(WoC) (Surowiecki, 2004). 

1.1 Wisdom of crowds 

In his 1907 publication in Nature, Francis Galton reports on 
a crowd at a state fair, which was able to guess the weight of 
an ox better than any cattle expert (Galton, 1907). Intrigued 
by this phenomenon James Surowiecki in 2004 publishes: 
“The Wisdom of Crowds: Why the Many are Smarter than 
the Few and How Collective Wisdom Shapes Business, 
Economies, Societies and Nations” (Surowiecki, 2004). In 
that book Surowiecki explains that “Under the right 
circumstances, groups are remarkably intelligent, and are 
often smarter than the smartest people in them. Groups do 
not need to be dominated by exceptionally intelligent people 
in order to be smart. Even if most of the people within a 
group are not especially well-informed or rational, it can 
still reach a collectively wise decision” (Surowiecki, 2004). 
Surowiecki further explains that for a crowd to be wise it 
has to satisfy four criteria: 

• Cognitive diversity – individuals should have private 
information. 

• Independence – opinions of individuals should be 
autonomously generated. 

• Decentralisation – individual should be able to 
specialise and draw on local knowledge. 

• Aggregation – a methodology should be available for 
arriving at a common answer. 

Since the publication of Surowiecki’s book, the WoC 
algorithm has been applied to many important problems 
both by social scientists (Yi et al., 2010) and computer 
scientists (Wagner et al., 2010; Mozer et al., 2008; Bai and 
Krishnamachari, 2010; Moore and Clayton, 2008; 
Shiratsuchi et al., 2006; Osorio and Whitney, 2005). 
However, all such research used real human beings  
either in person or via a network to obtain the crowd effect. 

In this work we propose a way to generate an artificial 
crowd of intelligent agents capable of coming up with 
independent solutions to a complex problem (Ashby and 
Yampolskiy, 2011). 

2 Wisdom of artificial crowds 

Wisdom of artificial crowds (WoAC) is a novel  
swarm-based nature-inspired metaheuristic algorithm for 
global optimisation (Ashby and Yampolskiy, 2011).  
WoAC is a post-processing algorithm in which 
independently-deciding artificial agents aggregate their 
individual solutions to arrive at an answer which is superior 
to all solutions present in the population. The algorithm is 
inspired by the natural phenomenon known as the WoC 
(Surowiecki, 2004). WoAC is designed to serve as a post-
processing step for any swarm-based optimisation algorithm 
in which a population of intermediate solutions is produced, 
for example in this paper we will illustrate how WoAC can 
be applied to a standard GA. 

The population of intermediate solutions to a problem is 
treated as a crowd of intelligent agents. For a specific 
problem an aggregation method is developed which  
allows individual solutions present in the population to be 
combined to produce a superior solution. The approach is 
somewhat related to ensemble learning (Opitz and  
Maclin, 1999) methods such as boosting or bootstrap 
aggregation (Melville and Mooney, 2003, 2004) in the 
context of classifier fusion in which decisions of 
independent classifiers are combined to produce a superior 
meta-algorithm. The main difference is that in ensembles 
“when combining multiple independent and diverse 
decisions each of which is at least more accurate than 
random guessing, random errors cancel each other out, 
correct decisions are reinforced” (Mooney, 2007), but in 
WoAC individual agents are not required to be more 
accurate than random guessing. 

3 Solving TSP 

Travelling salesman problem (TSP) has attracted a lot of 
attention over the years (Bellmore and Nemhauser, 1968; 
Dorigo and Gambardella, 1997; Burkard et al., 1998) 
because finding optimal paths is a requirement that 
frequently appears in real world applications and because it 
is a well defined benchmark problem to test newly 
developed heuristic approaches (Rabanal et al., 2007). TSP 
is a combinatorial optimisation problem and could be 
represented by the following model (Dorigo et al., 2006):  
P = (S, Ω, f) in which S is a search space defined over a 
finite set of discrete decision variables Xi, i = 1, …, n; a set 
of constraints Ω; and an objective function f to be 
minimised. 

TSP is a well known NP-hard problem meaning that an 
efficient algorithm for solving TSP will be an efficient 
algorithm for other NP-complete problems. In simple terms 
the problem could be stated as follows: a salesman is given 
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a list of cities and a cost to travel between each pair of  
cities (or a list of city locations). The salesman must  
select a starting city and visit each city exactly once and 
return to the starting city. His problem is to find the route 
(also known as a Hamiltonian cycle) that will have the 
lowest cost. In this paper, we will use TSP as a non-trivial 
testing ground for our algorithm. 

3.1 Dataset 

Data for testing of our algorithm has been generated using a 
piece of software called Concorde (Cook, 2005). Concorde 
is a C programme written for solving the symmetric TSP 
and some related network optimisation problems and is 
freely available for academic use. The programme also 
allows one to generate new instances of the TSP of any size 
either with random distribution of nodes, or with predefined 
coordinates. For problems of moderate size, the software 
could be used to obtain optimal solutions to specific TSP 
instances. Below is an example of a Concorde data file with 
seven cities: 

NAME: concorde7 
TYPE: TSP 
COMMENT: Generated by CCutil_writetsplib 
COMMENT: Write called for by Concorde GUI 
DIMENSION: 7 
EDGE_WEIGHT_TYPE: EUC_2D 
NODE_COORD_SECTION 
1 87.951292 2.658162 
2 33.466597 66.682943 
3 91.778314 53.807184 
4 20.526749 47.633290 
5 9.006012 81.185339 
6 20.032350 2.761925 
7 77.181310 31.922361 

3.2 Genetic algorithms 

Inspired by evolution, GAs constitutes a powerful set of 
optimisation tools that have demonstrated good performance 
on a wide variety of problems including some classical NP-
complete problems such as the TSP and multiple sequence 
alignment (MSA) (Yampolskiy, 2010). GAs search the 
solution space using a simulated ‘Darwinian’ evolution that 
favours survival of the fittest individuals. Survival of such 
population members is ensured by the fact that fitter 
individuals get a higher chance at reproduction and survive 
to the next generation in larger numbers (Goldberg, 1989). 

GAs have been shown to solve linear and non-linear 
problems by exploring all regions of the state space and 
exponentially exploiting promising areas through standard 
genetic operators, eventually converging populations of 
candidate solutions to a single global optimum. However, 
some optimisation problems contain numerous local optima 
which are difficult to distinguish from the global maximum 

and therefore result in sub-optimal solutions. As a 
consequence, several population diversity mechanisms have 
been proposed to delay or counteract the convergence of the 
population by maintaining a diverse population of members 
throughout its search. 

A typical GA follows the following steps (Yampolskiy 
et al., 2004): 

1 a population of N possible solutions is created 

2 the fitness value of each individual is determined 

3 repeat the following steps N/2 times to create the next 
generation 
a choose two parents using tournament selection 
b with probability pc, crossover the parents to create 

two children; otherwise simply pass parents to the 
next generation 

c with probability pm for each child, mutate that child 
d place the two new children into the next 

generation. 

4 repeat new generation creation until a satisfactory 
solution is found or the search time is exhausted. 

3.3 Implemented GA for solving TSP 

The GA used in this project has four main operations: 
initialisation, crossover, mutation and cloning. 

To understand the effect of initialisation, Figure 1 shows 
a totally random route that can represent one of the 
chromosomes in the initial population. The total distance is 
very long which suggests that starting from a totally random 
solution is not the best way to achieve a good result at  
the end. 

Figure 1 A chromosome from a random initial population  
(see online version for colours) 

 

In order to improve fitness of the starting population, we 
have undertaken some preprocessing steps. Figures 2 and 3 
show two initialisations that use the polar coordinates to 
arrange the cities in the increasing direction of theta. This 
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allows us to make use of a special property of the polar 
coordinates, specifically that they span the whole domain 
without any intersection. Consequently, the chromosome 
looks well organised but it has no diversity to construct a 
population of say 50 chromosomes, which means we must 
have some randomness in the initial population. 

Figure 2 Cities arranged according to the value of theta in 
ascending order from –π to π (see online version  
for colours) 

 

Figure 3 Cities arranged into two groups according to their ‘r’ 
values (see online version for colours) 

 

To use polar coordinates we take the following steps: 

• shift Cartesian coordinates for all cities such that the 
origin is in the middle 

• transform all cities coordinates from Cartesian to polar 

• arrange cities according to the value of theta in 
ascending order from –π to π 

• Figure 2 shows the result of the previous steps 

• if we split the cities into two groups according to their 
‘r’ values then arrange cities in each group according to 
theta we will achieve the result in Figure 3. 

This allows us to initialise the search in a way that is less 
random but still contains enough diversity in the initial 
population. This makes the chromosomes able to produce 
diverse children that have better characteristics. To do this, 
we make use of the polar coordinates by arranging the cities 
into ten regions each of 36°. Inside each region, the cities 
order is random. So we keep randomness, but in an 
organised way. This ensures that the cities in each group are 
close to each other but inside any group, they are connected 
randomly. This is illustrated in Figure 4. 

Figure 4 A chromosome arranged in ten groups in the direction 
of ascending increase of theta but inside each group 
connected randomly (see online version for colours) 

 

The crossover is done using two different operators. 
The first one is a one-point crossover that changes the 

position of the crossover point every iteration starting from 
being in the middle of the chromosome and going back to 
the beginning of the chromosome. Then it takes from the 
other parent the remaining cities in order, starting from the 
nearest city to the last city, before crossover and choosing 
every time the city closest to the previous one. 

Figure 5 Random crossover point 

 

The second one is also a one-point crossover but it selects 
the longest distance between two cities in the chromosome 
as a breaking point and then it takes the rest of the 
chromosome from the other parent in the order of 
appearance. 

Both crossover operators produce two children from 
every two parents resulting in the same number of 
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chromosomes in each population. To ensure that the 
algorithm progresses towards a better solution, the best ten 
parents are cloned into the new population instead of the ten 
worst children. For the mutation operation we swap two 
cities in such a way as to remove one path crossing 
(intersection). The mutation operator was designed to 
remove one intersection at a time but it does this only if it 
will enhance the result by making the final path shorter. 
That is why at the end, some intersections will remain, since 
when the mutation function tried to remove them the 
resulting distance was longer. 

Figure 6 Crossover at the longest distance between two cities 

 

3.4 Post processing 

A function was designed to check every two segments in a 
chromosome. If they are intersected, it removes the 
intersection by swapping two points as shown in Figure 7. 
This function was added as an optional post processing  
step that might enhance the solution. The function  
does not check if the resulting solution is better or not. It  
simply removes any intersections from the resulting 
solution. 

Figure 7 Mutation operation removes intersections 

 

3.5 WoAC aggregation method 

Building on the work of Yi et al. (2010) who used  
a group of volunteers to solve instances of TSP and 
aggregated their answers, we have developed an automatic 
aggregation method which takes individual solutions and 
produces a common solution which reflects frequent local 
structures of individual answers. The approach is based on 
the belief that good local connections between nodes will 
tend to be present in many solutions, while bad local 
structures will be relatively rare. After constructing an 
agreement matrix, Yi et al. (2010) applied a non-linear 
monotonic transformation function in order to transform  
agreements between answers into costs. They focused on 
the function: 

( )1
1 21 , ,

ijij ac I b b−= −  (1) 

 

 

where 

( )1
1 2,

ijaI b b−  (2) 

is the inverse regularised beta function with parameters b1 
and b2 both taking a value of at least 1 Yi et al. (2010). 

In our implementation of the aggregation function,  
we continue working with agreements between local 
components of the solutions. 

• initialising the crowds must be done in such a way that 
they have diversity 

• aggregating population of solutions to produce a better 
solution. 

To achieve diversity in the crowds we use polar coordinates 
in initialising the GA used for making the crowds. To 
illustrate that, Figure 8 shows four different initialisations. 
The cities are arranged in ascending order of theta with the 
origin in the middle of the figure, then divided into 2, 3, 5 
and 6 groups. After that, the GA is applied to each group 
five times to initiate 20 different solutions. These solutions 
will be the crowds and in this way they will contain the 
required diversity. 

Figure 8 Four different initialisations of the GA (see online 
version for colours) 

 

To aggregate these solutions we do the following: 

• Prepare a list containing in every row a city and the two 
cities connected to it. For example if the third row 
contains 65 and 34 that means that the third city is 
connected to city 65 and 34. 

• If 90% of the crowd agreed on a link between two cities 
then we will keep this link. 

• Finally, we execute a greedy algorithm which  
removes all of the remaining intersections as a post 
processing step. 
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The results of the aggregation process are illustrated in 
Figures 9 and 10. Figure 9 shows the common segments that 
were repeated in 90% of the solutions. Figure 10 shows the 
final result after connecting these segments and removing 
intersections. 

Figure 9 Segments common to 90% of crowd members (see 
online version for colours) 

 

Figure 10 Solution based on aggregation of segments and 
intersection removal (see online version for colours) 

 

3.6 TSP-experimental results 

The developed software was tested on problems with  
100, 150 and 200 cities. Table 1 shows achieved results  
 
 
 

for the GA and for WoAC. Both minimum and average 
performance is reported for the GA. WoAC algorithm 
outperformed GA on all problems on average by between 
6% and 9%. 

Table 1 Performance of GA vs. WoAC 

# of 
Cities 

GA 
min 

GA 
average WoAC % 

Improved 

100 894.1571 914.1940 831.1936 9% 
150 1,077.9 1,093.1 1,025.4681 6% 
200 1,233.7 1,256.7 1,178.4072 6% 

Figure 11 Performance of GA (top) and WoAC on a 100 city 
problem (see online version for colours) 

 
Figure 12 Performance of GA (top) and WoAC on a 150 city 

problem (see online version for colours) 
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Figures 11 to 13 display in red the distance of each  
of the GA solutions while the blue line is the solution  
after applying the WoAC represented as a horizontal  
line. It is clear that it enhanced the GA solutions  
and produced a solution that is better than all the  
20 solutions of the GA. This was achieved up to the case of 
200 cities. 

Figure 13 Performance of GA (top) and WoAC on a 200 city 
problem (see online version for colours) 

 

4 Solving the KP 

Knapsack problem (KP) is a classical NP-complete problem 
in the field of combinatorial optimisation (Guo et al., 2010). 
This problem has very important applications in financial 
and industrial domains, in combinatorics, complexity 
theory, cryptography and applied mathematics. KP can be 
used to model resource distribution, investment decision-
making, items shipment, budget control and project 
selection, and it often represents a part of a larger problems. 

In KP, a set of items each with a weight and a value is 
given and the objective is to determine which items to 
include in a collection so that the total weight is less than a 
given limit and the total value is as large as possible. The 
problem derives its name from the situation of someone 
who is constrained by a fixed-size knapsack and needs to fill 
it with the most useful items. The decision form of the KP is 
the question “can a value of at least V be achieved without 
exceeding the weight W?” 

Mathematically the problem consists of a knapsack that 
has positive integer weight (capacity) W. There are N 
distinct items that may potentially be placed in the 
knapsack. Item i has a positive integer weight Wi and 
positive integer value Vi. In addition, there are Ci copies of 
item i available, where quantity Ci is a positive integer 
satisfying 1 ≤ Ci ≤ ∞. 

Let Xi determines how many copies of item i are to be 
placed into the knapsack. The goal is to maximise: 

1

N
i ii

v x
=∑  (3) 

Subject to the constraint 

1

N
i ii

w x w
=

≤∑  (4) 

If one or more of the ci is infinite, the KP is unbounded; 
otherwise, the KP is bounded. For the bounded KP  
xi∈{0, 1,…, Ci}. The 0–1 KP is a special case where  
xi∈{0, 1} (Hristakeva and Shrestha, 2004). In this paper, the 
work is done on the bounded 0–1 KP, where we cannot have 
more than one copy of an item in the knapsack. 

To illustrate the problem in more details let’s consider 
the case of three items A, B and C with weights 5, 9 and  
15 and values 4, 6 and 8 respectively. The knapsack 
capacity is 20. Because this is a small problem we can brute 
force the solution by checking all the possible solutions as 
shown in the Table 2. 

Table 2 Simple case of the 0-1 KP 

A B C Weight Value 

0 0 0 0 0 

0 0 1 15 8 

0 1 0 9 6 

0 1 1 9 + 15 = 24 > 20 rejected 6 + 8 = 14 

1 0 0 5 4 

1 0 1 5 + 15 = 20 4 + 8 = 12 best 

1 1 0 5 + 9 = 14 4 + 6 = 10 

1 1 1 5 + 9 + 15 = 29 > 20 rejected 4 + 6 + 8 = 18 

It is clear that if we have a 100 items, we should consider 
2100 cases and calculate the weight for all of them then 
calculate the value for those satisfying the constraint and 
finally select the highest value. We can see from this 
discussion that brute forcing is not suitable for such a 
problem so in this paper we will consider finding an 
approximate solution by using a GA and improving results 
via a novel postprocessing algorithm we call the WoAC. 

4.1 Prior work 

There are two kinds of algorithms for KP. The first  
kind consists of precise algorithms such as dynamic 
programming, backtracking, and branch and bound, and the 
other kind is the set of approximate algorithms including 
greedy method and Lagrange method. The time complexity 
for solving the KP increases rapidly as the problem scale 
grows. Specifically, the time complexity is O(2n) in the 
worst case. So, it is important to design an effective 
approximation algorithm for solving the KP (Qiao et al., 
2008). 

Several works in literature used GAs combined with 
other methods to solve the 0-1 KP. In Zhao et al. (2009), a  
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GA based on Greedy strategy is introduced. It begins with 
analysis of three kinds of commonly used greedy algorithms 
to solve 0–1 KP. Combining this with the basic principles of 
GAs, the achieved improvement lies in the establishment of 
the original population using greedy strategy. In Guo et al. 
(2010), a solution of the problem by Chaotic GA is 
presented. It introduces Chaos idea into GA, adding the 
disturbance to help find better solutions compared to the 
traditional GA. The work in Zhao et al. (2008) combines 
multi-agent theory and master-slave model parallel GA 
(MSM-PGA) together into one union. This union solves the 
0–1 KP via coordination between many Agents inside the 
union. 

GA is not the only approximation approach for solving 
the KP. In Zhang and Wei (2008), particle swarm 
optimisation (PSO) algorithm is used. This is a bio-inspired 
optimisation algorithm based on group intelligence. In Qiao 
et al. (2008), the authors combine the mobile agent 
technology with the traditional parallel algorithm which 
enables changing the parallel process handled in a parallel 
computer to the process performed by several ordinary 
computers, and by doing so avoid the restrictions of the 
limited computational resources. In Jun and Jian (2009), a 
discrete binary version of differential evolution (DBDE) 
was employed, where each component of a mutated vector 
component changes with the differential probability and will 
take on a zero or one value. 

A schema-guiding evolutionary algorithm (SGEA) is 
proposed in Liu and Liu (2009). It improves the diversity of 
the population and the local and global search power. The 
work in Martello et al. (1999) presents a combination of 
dynamic programming and strong bounds, in addition valid 
inequalities are generated and surrogate relaxed, and a  
new initial core problem is adopted. 

In this paper, a GA is developed and the results are 
enhanced using the postprocessing algorithm we call the 
WoAC. The original WoC concept was introduced by James 
Surowiecki in 2004 (Surowiecki, 2004). It highlights the 
aggregation of information in groups, resulting in decisions 
that are often better than could have been made by any 
single member of the group (Narasimhan et al., 2010; 
Osorio and Whitney, 2005; Kostakos, 2009). 

4.2 The 0–1 KP using GA and WoAC 

To solve the KP using GA the chromosome length is set 
equal to the number of items and each gene will represent 
one item and take the value 0 if we will not put that item in 
the knapsack or 1 if we will put it. The population starts 
randomly with chromosomes that do not necessarily satisfy 
the capacity constraint. 

Two types of crossover are tested. The one-point 
crossover selects randomly a point and does the crossover 
after that point and the two-point crossover selects two 
points randomly and does the crossover between them as 
follows: 

Parent 1:    |                    

Parent 2 :  |            

Child 1:     |              

Child 2 :   |                 
 

0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0

0 1 0 0 1 0 0 0

1 1 1 0 0 1 1 1

1 0  1 1 0  1 1 0  1  0  1 1 0  1 1 0
1 0  1  1  0 1 0  1

1 0  1 1 0  1 1 0  
                  One point                  Two-point

 

To make this clear one of the parents is represented in the 
bold font and the other is in italic and the children after the 
crossover can be seen by tracking the bold and italic genes. 

The mutation is done on a small percentage of the 
children to ensure that the algorithm does not get stuck at a 
local maximum point. The mutation simply picks randomly 
a chromosome then picks randomly a gene in that 
chromosome and reverses its value as follows: 

1 0 1 0 1  0 1    mutation      1  0 1 0 1  0 1→ →1 0  

The cloning is used to ensure that every new generation has 
the best value which is equal to the best in the previous 
generation if not higher. This is done through keeping the 
best 10% of the parents. The ratio will vary because we 
insert these best parents in place of the children that exceed 
the capacity, so if in a generation: less than 10% exceeds the 
capacity this means that this generation has good children 
and will keep them so fewer parents are cloned. The 
minimum cloning is to keep the best parent, and so to ensure 
that the best value in the new generation will not be less 
than the previous generation. 

The WoAC is used after that to refine the results. To 
initiate a crowd that has diversity of opinions, we run the 
GA 100 times for the one-point crossover and another  
100 for the two-point crossover. In this way we have  
200 solutions that came from two different ‘cultures’. The 
method used to aggregate opinions can be summarised as 
follows: If 80% of the crowd set an item to zero, the item is 
not included. If 55% of the crowd set an item to one it is 
included in the knapsack. Doing this will lead to total 
weight less than the allowed capacity, so we use a greedy 
algorithm to fill the rest of the knapsack with higher  
value items. 

An important thing to note is that different percentages 
were used in the case of aggregating opinions in the zero 
and one cases. It was found that accepting the crowds 
opinion in the case of zero (not taking the item) should be 
more accurate than the case of one (taking the item). The 
disadvantage in using the WoC in this way is that it took a 
lot of time to initiate the crowds, but this is important to 
ensure diversity of opinions. 

4.3 Experimental results 

4.3.1 Data 

Generating instants of the 0–1 KP to test the algorithm was 
not a hard task since we simply need N items with different 
weights and values. First, a vector of length N with values 
taken randomly between 1 and 1,000 is created to represent 
the weights of the N items arranged in ascending order. 
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Then, the values are also arranged in ascending order from 1 
to 200 which means items with higher weight will have 
higher values. The capacity of the knapsack is considered as 
1/4 of the sum of all of the weights rounded to the nearest 
thousand by the floor function. The problem generated in 
this way will consist of four variables: 

• N: the number of the items (will be the length of the 
chromosome) 

• weights: a 1 × N vector arranged in ascending order 
represents weights of items 

• values: a 1 × N vector represents value of items 

• capacity: 1/4 of the sum of all of the weights rounded to 
the nearest thousand. 

For example an instance with nine items of weights and 
values will be: 

[50  200  357  411  473  556  670  910  950] 
  [20   40     60    80 1 00 1 20   140 1 60 1 80]
=

=
Weights
Values

 

The solution of the problem takes the form of a vector of 
length N that has a value of 1 if this item is taken into the 
knapsack or 0 if it is not taken, for example: 

 [1 0 0 1 0 1 0 1 1] with total value  56= =Solution  

4.3.2 Results 

The code was written using MATLAB 7.8.0 (R2009a) and 
was tested on a PC with a processor Intel(R) Pentium(R)  
4 CPU 3.00 GHz and installed memory (RAM) 4.00 GB 
(3.25 GB usable). It was tested on the previously illustrated 
problem with number of items N = 100. To visualise the 
results a 10 × 10 matrices are plotted which illustrate the 
items with the value of the item written inside each cell and 
its weight written under the cell. If we will put an item in 
the knapsack then its colour is green and if we will not take 
it, its colour is red. In this way we can see how the GA 
evolves from one generation to another. 

In Figure 14, we can see the best chromosome in the 
initial population which had a total value of 2,362 and 
utilised 12,862 unit of weight out of the 13,000 possible. 
Figures 15 and 16 show the best chromosome in the 
population after 2000 generations using one-point crossover 
and two-point crossover respectively. For the one-point 
crossover the value was 2,576 and in the two-point 
crossover it was 2,556. In both cases the whole weight of 
13,000 was utilised. Figure 17 shows the result of applying 
the WoAC to 200 chromosomes obtained from running the 
GA 200 times half of them with one-point crossover and the 
other half with two-point crossover. The total value 
increased to 2,602 achieving 1% increase over the one-point 
crossover and 1.8% increase over the two-point crossover. 
To illustrate more, Figure 17 shows green boxes with red 
frame which denote items that were not taken in GA but the 
WoAC decided to take them and the red boxes with green  
 
 

frames representing the items the WoAC removed from the 
knapsack. 

It is clear from the results that the GA was suitable to 
the problem because its implementation was very simple 
which makes a population of size 100 processed in just 
0.005 seconds. This enabled doing a large number of 
generations. The evolution curves for 2,000 generation and 
20,000 generation are displayed in Figures 18 and 19 
respectively. The WoAC was suitable for postprocessing 
and allowed us to obtain better results compared to running 
GA for 20,000 generations. The disadvantage of the WoAC 
approach is that it takes a lot of time to produce the initial 
crowd, specifically we need to run 2,000 generations  
200 times. 

Figure 14 Initial population (see online version for colours) 

 

Figure 15 After 2,000 generation of GA using one-point 
crossover (see online version for colours) 
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Figure 16 After 2,000 generations of two-point crossover  
(see online version for colours) 

 

Figure 17 Applying WoAC (see online version for colours) 

 

Figure 18 Evolution curve for 2,000 generations of GA only  
(see online version for colours) 

 
 

Figure 19 Evolution curve for 20,000 generations of GA only 
(see online version for colours) 

 

5 Conclusions 

We have presented a novel swarm-based nature-inspired 
metaheuristic algorithm for global optimisation. In many 
cases WoAC outperformed even the best solutions  
produced by the GA. As the datasets increase in size, the 
GA performs worse, but this allows more room for 
improvement for WoAC. WoAC is a postprocessing 
algorithm with running time in milliseconds which is 
negligible in comparison to the algorithm it attempts to 
improve, genetic search. While, WoAC does not always 
produce a superior solution, in cases where it fails  
it can be simply ignored since the GA itself provides a  
better solution in such cases. Consequently, WoAC  
is computationally efficient and can only improve  
the quality of solutions, never hurting the overall  
outcome. 

In the future, we plan on conducting additional 
experiments aimed at improving overall performance  
of the WoAC algorithm. In particular we are going to  
investigate how WoAC could be combined with non-GA, 
swarm-based approaches such as ACO (Dorigo et al., 2006), 
BCO (Pham et al., 2006), (BFO) (Passino, 2002), or (GSO) 
(Krishnanand and Ghose, 2005). Special attention should  
be given to investigating better aggregation rules and 
optimal ways of achieving diversity in the populations. An 
important question to ask, deals with an optimal percentage 
of the population to be used in the crowd. In other words, 
should the whole population be used or is it better to select a 
sub-group of ‘experts’. 
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