
358 Int. J. Bio-Inspired Computation, Vol. 3, No. 6, 2011

Copyright © 2011 Inderscience Enterprises Ltd.

Wisdom of artificial crowds algorithm for solving
NP-hard problems

Roman V. Yampolskiy*
Duthie Center for Engineering, 215,
Speed School of Engineering,
University of Louisville,
Louisville, KY 40292, USA
E-mail: roman.yampolskiy@louisville.edu
*Corresponding author

Ahmed EL-Barkouky
Electrical and Computer Engineering,
Speed School of Engineering,
University of Louisville,
Louisville, KY 40292, USA
E-mail: arelba01@louisville.edu

Abstract: The paper describes a novel algorithm, inspired by the phenomenon of wisdom of
crowds, for solving instances of NP-hard problems. The proposed approach achieves superior
performance compared to the genetic algorithm-based approach and requires modest
computational resources. On average, a 6%–9% improvement in quality of solutions has been
observed.

Keywords: knapsack problem; KP; NP-complete; optimisation; travelling salesman problem;
TSP; wisdom of artificial crowds; WoAC.

Reference to this paper should be made as follows: Yampolskiy, R.V. and EL-Barkouky, A.
(2011) ‘Wisdom of artificial crowds algorithm for solving NP-hard problems’, Int. J.
Bio-Inspired Computation, Vol. 3, No. 6, pp.358–369.

Biographical notes: Roman V. Yampolskiy received his PhD in Computer Science and
Engineering from the University at Buffalo. He was a recipient of a four-year NSF Fellowship.
Before his doctoral studies, he received his BS/MS (High Honours) combined
degree in Computer Science from Rochester Institute of Technology. In 2008, he accepted an
Assistant Professor position at the Speed School of Engineering, University of Louisville. His
main areas of interest are behavioural biometrics, computer forensics, robot authentication and
pattern recognition. He is the author of over 50 publications including multiple journal articles
and books.

Ahmed EL-Barkouky is currently a PhD student at the ECE Department, University of
Louisville, USA. He received his BSc degree from the Electrical Engineering Department,
Ainshams University, Egypt in 2002 and his MSc degree from the Engineering Mathematics
Department, Ainshams University, Egypt in 2009. His research domain is artificial intelligence
and computer vision.

1 Introduction

NP-hard problems are believed to require exponential
time for exact solutions (Karp, 1972). Since it is not
feasible to practically solve such problems using classical
computer architectures, optimal methods have been
replaced with approximation algorithms that usually need
polynomial time to provide reasonably good solutions
(Rabanal et al., 2007).

Heuristic algorithms capable of addressing diverse
problems are known as metaheuristics. Such algorithms are

computational methods that attempt to find a close
approximation to an optimal solution by iteratively trying to
improve a candidate answer with regard to a given measure
of quality. Metaheuristic algorithms do not make any
assumptions about the problem being optimised and are
capable of searching very large spaces of potential
solutions. Unfortunately, metaheuristic algorithms are
unlikely to arrive at an optimal solution for the majority of
large real world problems. However, research continues to
find asymptotically better metaheuristic algorithms for
specific problems.

 Wisdom of artificial crowds algorithm for solving NP-hard problems 359

Most metaheuristic algorithms in optimisation and
search have been modelled on processes observed in
biological systems: genetic algorithms (GAs) (Goldberg,
1989), genetic programming (GP) (Koza, 1990), cellular
automata (CA) (Wolfram, 2002), artificial neural networks
(ANN), artificial immune system (AIS) (Farmer et al.,
1986). Expanding on this trend of bio-inspired solutions a
large number of animal or plant behaviour-based algorithms
have been proposed in recent years: ant colony optimisation
(ACO) (Dorigo et al., 2006), bee colony optimisation
(BCO) (Pham et al., 2006), bacterial foraging optimisation
(BFO) (Passino, 2002), glow-worm swarm optimisation
(GSO) (Krishnanand and Ghose, 2005), firefly algorithm
(FA) (Yang, 2009), cuckoo search (CS) (Yang and Deb,
2009), flocking birds (FB) (Reynolds, 1987), harmony
search (HS) (Geem et al., 2001), monkey search (MS)
(Mucherino and Seref, 2007) and invasive weed
optimisation (IWO) (Mehrabian and Lucas, 2006). In this
paper, we propose a novel algorithm modelled on the
natural phenomenon known as the wisdom of crowds
(WoC) (Surowiecki, 2004).

1.1 Wisdom of crowds

In his 1907 publication in Nature, Francis Galton reports on
a crowd at a state fair, which was able to guess the weight of
an ox better than any cattle expert (Galton, 1907). Intrigued
by this phenomenon James Surowiecki in 2004 publishes:
“The Wisdom of Crowds: Why the Many are Smarter than
the Few and How Collective Wisdom Shapes Business,
Economies, Societies and Nations” (Surowiecki, 2004). In
that book Surowiecki explains that “Under the right
circumstances, groups are remarkably intelligent, and are
often smarter than the smartest people in them. Groups do
not need to be dominated by exceptionally intelligent people
in order to be smart. Even if most of the people within a
group are not especially well-informed or rational, it can
still reach a collectively wise decision” (Surowiecki, 2004).
Surowiecki further explains that for a crowd to be wise it
has to satisfy four criteria:

• Cognitive diversity – individuals should have private
information.

• Independence – opinions of individuals should be
autonomously generated.

• Decentralisation – individual should be able to
specialise and draw on local knowledge.

• Aggregation – a methodology should be available for
arriving at a common answer.

Since the publication of Surowiecki’s book, the WoC
algorithm has been applied to many important problems
both by social scientists (Yi et al., 2010) and computer
scientists (Wagner et al., 2010; Mozer et al., 2008; Bai and
Krishnamachari, 2010; Moore and Clayton, 2008;
Shiratsuchi et al., 2006; Osorio and Whitney, 2005).
However, all such research used real human beings
either in person or via a network to obtain the crowd effect.

In this work we propose a way to generate an artificial
crowd of intelligent agents capable of coming up with
independent solutions to a complex problem (Ashby and
Yampolskiy, 2011).

2 Wisdom of artificial crowds

Wisdom of artificial crowds (WoAC) is a novel
swarm-based nature-inspired metaheuristic algorithm for
global optimisation (Ashby and Yampolskiy, 2011).
WoAC is a post-processing algorithm in which
independently-deciding artificial agents aggregate their
individual solutions to arrive at an answer which is superior
to all solutions present in the population. The algorithm is
inspired by the natural phenomenon known as the WoC
(Surowiecki, 2004). WoAC is designed to serve as a post-
processing step for any swarm-based optimisation algorithm
in which a population of intermediate solutions is produced,
for example in this paper we will illustrate how WoAC can
be applied to a standard GA.

The population of intermediate solutions to a problem is
treated as a crowd of intelligent agents. For a specific
problem an aggregation method is developed which
allows individual solutions present in the population to be
combined to produce a superior solution. The approach is
somewhat related to ensemble learning (Opitz and
Maclin, 1999) methods such as boosting or bootstrap
aggregation (Melville and Mooney, 2003, 2004) in the
context of classifier fusion in which decisions of
independent classifiers are combined to produce a superior
meta-algorithm. The main difference is that in ensembles
“when combining multiple independent and diverse
decisions each of which is at least more accurate than
random guessing, random errors cancel each other out,
correct decisions are reinforced” (Mooney, 2007), but in
WoAC individual agents are not required to be more
accurate than random guessing.

3 Solving TSP

Travelling salesman problem (TSP) has attracted a lot of
attention over the years (Bellmore and Nemhauser, 1968;
Dorigo and Gambardella, 1997; Burkard et al., 1998)
because finding optimal paths is a requirement that
frequently appears in real world applications and because it
is a well defined benchmark problem to test newly
developed heuristic approaches (Rabanal et al., 2007). TSP
is a combinatorial optimisation problem and could be
represented by the following model (Dorigo et al., 2006):
P = (S, Ω, f) in which S is a search space defined over a
finite set of discrete decision variables Xi, i = 1, …, n; a set
of constraints Ω; and an objective function f to be
minimised.

TSP is a well known NP-hard problem meaning that an
efficient algorithm for solving TSP will be an efficient
algorithm for other NP-complete problems. In simple terms
the problem could be stated as follows: a salesman is given

360 R.V. Yampolskiy and A. EL-Barkouky

a list of cities and a cost to travel between each pair of
cities (or a list of city locations). The salesman must
select a starting city and visit each city exactly once and
return to the starting city. His problem is to find the route
(also known as a Hamiltonian cycle) that will have the
lowest cost. In this paper, we will use TSP as a non-trivial
testing ground for our algorithm.

3.1 Dataset

Data for testing of our algorithm has been generated using a
piece of software called Concorde (Cook, 2005). Concorde
is a C programme written for solving the symmetric TSP
and some related network optimisation problems and is
freely available for academic use. The programme also
allows one to generate new instances of the TSP of any size
either with random distribution of nodes, or with predefined
coordinates. For problems of moderate size, the software
could be used to obtain optimal solutions to specific TSP
instances. Below is an example of a Concorde data file with
seven cities:

NAME: concorde7
TYPE: TSP
COMMENT: Generated by CCutil_writetsplib
COMMENT: Write called for by Concorde GUI
DIMENSION: 7
EDGE_WEIGHT_TYPE: EUC_2D
NODE_COORD_SECTION
1 87.951292 2.658162
2 33.466597 66.682943
3 91.778314 53.807184
4 20.526749 47.633290
5 9.006012 81.185339
6 20.032350 2.761925
7 77.181310 31.922361

3.2 Genetic algorithms

Inspired by evolution, GAs constitutes a powerful set of
optimisation tools that have demonstrated good performance
on a wide variety of problems including some classical NP-
complete problems such as the TSP and multiple sequence
alignment (MSA) (Yampolskiy, 2010). GAs search the
solution space using a simulated ‘Darwinian’ evolution that
favours survival of the fittest individuals. Survival of such
population members is ensured by the fact that fitter
individuals get a higher chance at reproduction and survive
to the next generation in larger numbers (Goldberg, 1989).

GAs have been shown to solve linear and non-linear
problems by exploring all regions of the state space and
exponentially exploiting promising areas through standard
genetic operators, eventually converging populations of
candidate solutions to a single global optimum. However,
some optimisation problems contain numerous local optima
which are difficult to distinguish from the global maximum

and therefore result in sub-optimal solutions. As a
consequence, several population diversity mechanisms have
been proposed to delay or counteract the convergence of the
population by maintaining a diverse population of members
throughout its search.

A typical GA follows the following steps (Yampolskiy
et al., 2004):

1 a population of N possible solutions is created

2 the fitness value of each individual is determined

3 repeat the following steps N/2 times to create the next
generation
a choose two parents using tournament selection
b with probability pc, crossover the parents to create

two children; otherwise simply pass parents to the
next generation

c with probability pm for each child, mutate that child
d place the two new children into the next

generation.

4 repeat new generation creation until a satisfactory
solution is found or the search time is exhausted.

3.3 Implemented GA for solving TSP

The GA used in this project has four main operations:
initialisation, crossover, mutation and cloning.

To understand the effect of initialisation, Figure 1 shows
a totally random route that can represent one of the
chromosomes in the initial population. The total distance is
very long which suggests that starting from a totally random
solution is not the best way to achieve a good result at
the end.

Figure 1 A chromosome from a random initial population
(see online version for colours)

In order to improve fitness of the starting population, we
have undertaken some preprocessing steps. Figures 2 and 3
show two initialisations that use the polar coordinates to
arrange the cities in the increasing direction of theta. This

 Wisdom of artificial crowds algorithm for solving NP-hard problems 361

allows us to make use of a special property of the polar
coordinates, specifically that they span the whole domain
without any intersection. Consequently, the chromosome
looks well organised but it has no diversity to construct a
population of say 50 chromosomes, which means we must
have some randomness in the initial population.

Figure 2 Cities arranged according to the value of theta in
ascending order from –π to π (see online version
for colours)

Figure 3 Cities arranged into two groups according to their ‘r’
values (see online version for colours)

To use polar coordinates we take the following steps:

• shift Cartesian coordinates for all cities such that the
origin is in the middle

• transform all cities coordinates from Cartesian to polar

• arrange cities according to the value of theta in
ascending order from –π to π

• Figure 2 shows the result of the previous steps

• if we split the cities into two groups according to their
‘r’ values then arrange cities in each group according to
theta we will achieve the result in Figure 3.

This allows us to initialise the search in a way that is less
random but still contains enough diversity in the initial
population. This makes the chromosomes able to produce
diverse children that have better characteristics. To do this,
we make use of the polar coordinates by arranging the cities
into ten regions each of 36°. Inside each region, the cities
order is random. So we keep randomness, but in an
organised way. This ensures that the cities in each group are
close to each other but inside any group, they are connected
randomly. This is illustrated in Figure 4.

Figure 4 A chromosome arranged in ten groups in the direction
of ascending increase of theta but inside each group
connected randomly (see online version for colours)

The crossover is done using two different operators.
The first one is a one-point crossover that changes the

position of the crossover point every iteration starting from
being in the middle of the chromosome and going back to
the beginning of the chromosome. Then it takes from the
other parent the remaining cities in order, starting from the
nearest city to the last city, before crossover and choosing
every time the city closest to the previous one.

Figure 5 Random crossover point

The second one is also a one-point crossover but it selects
the longest distance between two cities in the chromosome
as a breaking point and then it takes the rest of the
chromosome from the other parent in the order of
appearance.

Both crossover operators produce two children from
every two parents resulting in the same number of

362 R.V. Yampolskiy and A. EL-Barkouky

chromosomes in each population. To ensure that the
algorithm progresses towards a better solution, the best ten
parents are cloned into the new population instead of the ten
worst children. For the mutation operation we swap two
cities in such a way as to remove one path crossing
(intersection). The mutation operator was designed to
remove one intersection at a time but it does this only if it
will enhance the result by making the final path shorter.
That is why at the end, some intersections will remain, since
when the mutation function tried to remove them the
resulting distance was longer.

Figure 6 Crossover at the longest distance between two cities

3.4 Post processing

A function was designed to check every two segments in a
chromosome. If they are intersected, it removes the
intersection by swapping two points as shown in Figure 7.
This function was added as an optional post processing
step that might enhance the solution. The function
does not check if the resulting solution is better or not. It
simply removes any intersections from the resulting
solution.

Figure 7 Mutation operation removes intersections

3.5 WoAC aggregation method

Building on the work of Yi et al. (2010) who used
a group of volunteers to solve instances of TSP and
aggregated their answers, we have developed an automatic
aggregation method which takes individual solutions and
produces a common solution which reflects frequent local
structures of individual answers. The approach is based on
the belief that good local connections between nodes will
tend to be present in many solutions, while bad local
structures will be relatively rare. After constructing an
agreement matrix, Yi et al. (2010) applied a non-linear
monotonic transformation function in order to transform
agreements between answers into costs. They focused on
the function:

()1
1 21 , ,

ijij ac I b b−= − (1)

where

()1
1 2,

ijaI b b− (2)

is the inverse regularised beta function with parameters b1
and b2 both taking a value of at least 1 Yi et al. (2010).

In our implementation of the aggregation function,
we continue working with agreements between local
components of the solutions.

• initialising the crowds must be done in such a way that
they have diversity

• aggregating population of solutions to produce a better
solution.

To achieve diversity in the crowds we use polar coordinates
in initialising the GA used for making the crowds. To
illustrate that, Figure 8 shows four different initialisations.
The cities are arranged in ascending order of theta with the
origin in the middle of the figure, then divided into 2, 3, 5
and 6 groups. After that, the GA is applied to each group
five times to initiate 20 different solutions. These solutions
will be the crowds and in this way they will contain the
required diversity.

Figure 8 Four different initialisations of the GA (see online
version for colours)

To aggregate these solutions we do the following:

• Prepare a list containing in every row a city and the two
cities connected to it. For example if the third row
contains 65 and 34 that means that the third city is
connected to city 65 and 34.

• If 90% of the crowd agreed on a link between two cities
then we will keep this link.

• Finally, we execute a greedy algorithm which
removes all of the remaining intersections as a post
processing step.

 Wisdom of artificial crowds algorithm for solving NP-hard problems 363

The results of the aggregation process are illustrated in
Figures 9 and 10. Figure 9 shows the common segments that
were repeated in 90% of the solutions. Figure 10 shows the
final result after connecting these segments and removing
intersections.

Figure 9 Segments common to 90% of crowd members (see
online version for colours)

Figure 10 Solution based on aggregation of segments and
intersection removal (see online version for colours)

3.6 TSP-experimental results

The developed software was tested on problems with
100, 150 and 200 cities. Table 1 shows achieved results

for the GA and for WoAC. Both minimum and average
performance is reported for the GA. WoAC algorithm
outperformed GA on all problems on average by between
6% and 9%.

Table 1 Performance of GA vs. WoAC

of
Cities

GA
min

GA
average WoAC %

Improved

100 894.1571 914.1940 831.1936 9%
150 1,077.9 1,093.1 1,025.4681 6%
200 1,233.7 1,256.7 1,178.4072 6%

Figure 11 Performance of GA (top) and WoAC on a 100 city
problem (see online version for colours)

Figure 12 Performance of GA (top) and WoAC on a 150 city

problem (see online version for colours)

364 R.V. Yampolskiy and A. EL-Barkouky

Figures 11 to 13 display in red the distance of each
of the GA solutions while the blue line is the solution
after applying the WoAC represented as a horizontal
line. It is clear that it enhanced the GA solutions
and produced a solution that is better than all the
20 solutions of the GA. This was achieved up to the case of
200 cities.

Figure 13 Performance of GA (top) and WoAC on a 200 city
problem (see online version for colours)

4 Solving the KP

Knapsack problem (KP) is a classical NP-complete problem
in the field of combinatorial optimisation (Guo et al., 2010).
This problem has very important applications in financial
and industrial domains, in combinatorics, complexity
theory, cryptography and applied mathematics. KP can be
used to model resource distribution, investment decision-
making, items shipment, budget control and project
selection, and it often represents a part of a larger problems.

In KP, a set of items each with a weight and a value is
given and the objective is to determine which items to
include in a collection so that the total weight is less than a
given limit and the total value is as large as possible. The
problem derives its name from the situation of someone
who is constrained by a fixed-size knapsack and needs to fill
it with the most useful items. The decision form of the KP is
the question “can a value of at least V be achieved without
exceeding the weight W?”

Mathematically the problem consists of a knapsack that
has positive integer weight (capacity) W. There are N
distinct items that may potentially be placed in the
knapsack. Item i has a positive integer weight Wi and
positive integer value Vi. In addition, there are Ci copies of
item i available, where quantity Ci is a positive integer
satisfying 1 ≤ Ci ≤ ∞.

Let Xi determines how many copies of item i are to be
placed into the knapsack. The goal is to maximise:

1

N
i ii

v x
=∑ (3)

Subject to the constraint

1

N
i ii

w x w
=

≤∑ (4)

If one or more of the ci is infinite, the KP is unbounded;
otherwise, the KP is bounded. For the bounded KP
xi∈{0, 1,…, Ci}. The 0–1 KP is a special case where
xi∈{0, 1} (Hristakeva and Shrestha, 2004). In this paper, the
work is done on the bounded 0–1 KP, where we cannot have
more than one copy of an item in the knapsack.

To illustrate the problem in more details let’s consider
the case of three items A, B and C with weights 5, 9 and
15 and values 4, 6 and 8 respectively. The knapsack
capacity is 20. Because this is a small problem we can brute
force the solution by checking all the possible solutions as
shown in the Table 2.

Table 2 Simple case of the 0-1 KP

A B C Weight Value

0 0 0 0 0

0 0 1 15 8

0 1 0 9 6

0 1 1 9 + 15 = 24 > 20 rejected 6 + 8 = 14

1 0 0 5 4

1 0 1 5 + 15 = 20 4 + 8 = 12 best

1 1 0 5 + 9 = 14 4 + 6 = 10

1 1 1 5 + 9 + 15 = 29 > 20 rejected 4 + 6 + 8 = 18

It is clear that if we have a 100 items, we should consider
2100 cases and calculate the weight for all of them then
calculate the value for those satisfying the constraint and
finally select the highest value. We can see from this
discussion that brute forcing is not suitable for such a
problem so in this paper we will consider finding an
approximate solution by using a GA and improving results
via a novel postprocessing algorithm we call the WoAC.

4.1 Prior work

There are two kinds of algorithms for KP. The first
kind consists of precise algorithms such as dynamic
programming, backtracking, and branch and bound, and the
other kind is the set of approximate algorithms including
greedy method and Lagrange method. The time complexity
for solving the KP increases rapidly as the problem scale
grows. Specifically, the time complexity is O(2n) in the
worst case. So, it is important to design an effective
approximation algorithm for solving the KP (Qiao et al.,
2008).

Several works in literature used GAs combined with
other methods to solve the 0-1 KP. In Zhao et al. (2009), a

 Wisdom of artificial crowds algorithm for solving NP-hard problems 365

GA based on Greedy strategy is introduced. It begins with
analysis of three kinds of commonly used greedy algorithms
to solve 0–1 KP. Combining this with the basic principles of
GAs, the achieved improvement lies in the establishment of
the original population using greedy strategy. In Guo et al.
(2010), a solution of the problem by Chaotic GA is
presented. It introduces Chaos idea into GA, adding the
disturbance to help find better solutions compared to the
traditional GA. The work in Zhao et al. (2008) combines
multi-agent theory and master-slave model parallel GA
(MSM-PGA) together into one union. This union solves the
0–1 KP via coordination between many Agents inside the
union.

GA is not the only approximation approach for solving
the KP. In Zhang and Wei (2008), particle swarm
optimisation (PSO) algorithm is used. This is a bio-inspired
optimisation algorithm based on group intelligence. In Qiao
et al. (2008), the authors combine the mobile agent
technology with the traditional parallel algorithm which
enables changing the parallel process handled in a parallel
computer to the process performed by several ordinary
computers, and by doing so avoid the restrictions of the
limited computational resources. In Jun and Jian (2009), a
discrete binary version of differential evolution (DBDE)
was employed, where each component of a mutated vector
component changes with the differential probability and will
take on a zero or one value.

A schema-guiding evolutionary algorithm (SGEA) is
proposed in Liu and Liu (2009). It improves the diversity of
the population and the local and global search power. The
work in Martello et al. (1999) presents a combination of
dynamic programming and strong bounds, in addition valid
inequalities are generated and surrogate relaxed, and a
new initial core problem is adopted.

In this paper, a GA is developed and the results are
enhanced using the postprocessing algorithm we call the
WoAC. The original WoC concept was introduced by James
Surowiecki in 2004 (Surowiecki, 2004). It highlights the
aggregation of information in groups, resulting in decisions
that are often better than could have been made by any
single member of the group (Narasimhan et al., 2010;
Osorio and Whitney, 2005; Kostakos, 2009).

4.2 The 0–1 KP using GA and WoAC

To solve the KP using GA the chromosome length is set
equal to the number of items and each gene will represent
one item and take the value 0 if we will not put that item in
the knapsack or 1 if we will put it. The population starts
randomly with chromosomes that do not necessarily satisfy
the capacity constraint.

Two types of crossover are tested. The one-point
crossover selects randomly a point and does the crossover
after that point and the two-point crossover selects two
points randomly and does the crossover between them as
follows:

Parent 1: |

Parent 2 : |

Child 1: |

Child 2 : |

0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0

0 1 0 0 1 0 0 0

1 1 1 0 0 1 1 1

1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0
1 0 1 1 0 1 0 1

1 0 1 1 0 1 1 0
 One point Two-point

To make this clear one of the parents is represented in the
bold font and the other is in italic and the children after the
crossover can be seen by tracking the bold and italic genes.

The mutation is done on a small percentage of the
children to ensure that the algorithm does not get stuck at a
local maximum point. The mutation simply picks randomly
a chromosome then picks randomly a gene in that
chromosome and reverses its value as follows:

1 0 1 0 1 0 1 mutation 1 0 1 0 1 0 1→ →1 0

The cloning is used to ensure that every new generation has
the best value which is equal to the best in the previous
generation if not higher. This is done through keeping the
best 10% of the parents. The ratio will vary because we
insert these best parents in place of the children that exceed
the capacity, so if in a generation: less than 10% exceeds the
capacity this means that this generation has good children
and will keep them so fewer parents are cloned. The
minimum cloning is to keep the best parent, and so to ensure
that the best value in the new generation will not be less
than the previous generation.

The WoAC is used after that to refine the results. To
initiate a crowd that has diversity of opinions, we run the
GA 100 times for the one-point crossover and another
100 for the two-point crossover. In this way we have
200 solutions that came from two different ‘cultures’. The
method used to aggregate opinions can be summarised as
follows: If 80% of the crowd set an item to zero, the item is
not included. If 55% of the crowd set an item to one it is
included in the knapsack. Doing this will lead to total
weight less than the allowed capacity, so we use a greedy
algorithm to fill the rest of the knapsack with higher
value items.

An important thing to note is that different percentages
were used in the case of aggregating opinions in the zero
and one cases. It was found that accepting the crowds
opinion in the case of zero (not taking the item) should be
more accurate than the case of one (taking the item). The
disadvantage in using the WoC in this way is that it took a
lot of time to initiate the crowds, but this is important to
ensure diversity of opinions.

4.3 Experimental results

4.3.1 Data

Generating instants of the 0–1 KP to test the algorithm was
not a hard task since we simply need N items with different
weights and values. First, a vector of length N with values
taken randomly between 1 and 1,000 is created to represent
the weights of the N items arranged in ascending order.

366 R.V. Yampolskiy and A. EL-Barkouky

Then, the values are also arranged in ascending order from 1
to 200 which means items with higher weight will have
higher values. The capacity of the knapsack is considered as
1/4 of the sum of all of the weights rounded to the nearest
thousand by the floor function. The problem generated in
this way will consist of four variables:

• N: the number of the items (will be the length of the
chromosome)

• weights: a 1 × N vector arranged in ascending order
represents weights of items

• values: a 1 × N vector represents value of items

• capacity: 1/4 of the sum of all of the weights rounded to
the nearest thousand.

For example an instance with nine items of weights and
values will be:

[50 200 357 411 473 556 670 910 950]
 [20 40 60 80 1 00 1 20 140 1 60 1 80]
=

=
Weights
Values

The solution of the problem takes the form of a vector of
length N that has a value of 1 if this item is taken into the
knapsack or 0 if it is not taken, for example:

 [1 0 0 1 0 1 0 1 1] with total value 56= =Solution

4.3.2 Results

The code was written using MATLAB 7.8.0 (R2009a) and
was tested on a PC with a processor Intel(R) Pentium(R)
4 CPU 3.00 GHz and installed memory (RAM) 4.00 GB
(3.25 GB usable). It was tested on the previously illustrated
problem with number of items N = 100. To visualise the
results a 10 × 10 matrices are plotted which illustrate the
items with the value of the item written inside each cell and
its weight written under the cell. If we will put an item in
the knapsack then its colour is green and if we will not take
it, its colour is red. In this way we can see how the GA
evolves from one generation to another.

In Figure 14, we can see the best chromosome in the
initial population which had a total value of 2,362 and
utilised 12,862 unit of weight out of the 13,000 possible.
Figures 15 and 16 show the best chromosome in the
population after 2000 generations using one-point crossover
and two-point crossover respectively. For the one-point
crossover the value was 2,576 and in the two-point
crossover it was 2,556. In both cases the whole weight of
13,000 was utilised. Figure 17 shows the result of applying
the WoAC to 200 chromosomes obtained from running the
GA 200 times half of them with one-point crossover and the
other half with two-point crossover. The total value
increased to 2,602 achieving 1% increase over the one-point
crossover and 1.8% increase over the two-point crossover.
To illustrate more, Figure 17 shows green boxes with red
frame which denote items that were not taken in GA but the
WoAC decided to take them and the red boxes with green

frames representing the items the WoAC removed from the
knapsack.

It is clear from the results that the GA was suitable to
the problem because its implementation was very simple
which makes a population of size 100 processed in just
0.005 seconds. This enabled doing a large number of
generations. The evolution curves for 2,000 generation and
20,000 generation are displayed in Figures 18 and 19
respectively. The WoAC was suitable for postprocessing
and allowed us to obtain better results compared to running
GA for 20,000 generations. The disadvantage of the WoAC
approach is that it takes a lot of time to produce the initial
crowd, specifically we need to run 2,000 generations
200 times.

Figure 14 Initial population (see online version for colours)

Figure 15 After 2,000 generation of GA using one-point
crossover (see online version for colours)

 Wisdom of artificial crowds algorithm for solving NP-hard problems 367

Figure 16 After 2,000 generations of two-point crossover
(see online version for colours)

Figure 17 Applying WoAC (see online version for colours)

Figure 18 Evolution curve for 2,000 generations of GA only
(see online version for colours)

Figure 19 Evolution curve for 20,000 generations of GA only
(see online version for colours)

5 Conclusions

We have presented a novel swarm-based nature-inspired
metaheuristic algorithm for global optimisation. In many
cases WoAC outperformed even the best solutions
produced by the GA. As the datasets increase in size, the
GA performs worse, but this allows more room for
improvement for WoAC. WoAC is a postprocessing
algorithm with running time in milliseconds which is
negligible in comparison to the algorithm it attempts to
improve, genetic search. While, WoAC does not always
produce a superior solution, in cases where it fails
it can be simply ignored since the GA itself provides a
better solution in such cases. Consequently, WoAC
is computationally efficient and can only improve
the quality of solutions, never hurting the overall
outcome.

In the future, we plan on conducting additional
experiments aimed at improving overall performance
of the WoAC algorithm. In particular we are going to
investigate how WoAC could be combined with non-GA,
swarm-based approaches such as ACO (Dorigo et al., 2006),
BCO (Pham et al., 2006), (BFO) (Passino, 2002), or (GSO)
(Krishnanand and Ghose, 2005). Special attention should
be given to investigating better aggregation rules and
optimal ways of achieving diversity in the populations. An
important question to ask, deals with an optimal percentage
of the population to be used in the crowd. In other words,
should the whole population be used or is it better to select a
sub-group of ‘experts’.

References
Ashby, L.H. and Yampolskiy, R.V. (2011) ‘Genetic algorithm and

wisdom of artificial crowds algorithm applied to light up’,
16th International Conference on Computer Games: AI,
Animation, Mobile, Interactive Multimedia, Educational &
Serious Games, Louisville, KY, USA, 27–30 July.

368 R.V. Yampolskiy and A. EL-Barkouky

Bai, F. and Krishnamachari, B. (2010) ‘Exploiting the wisdom
of the crowd: localized, distributed information-centric
VANETs’, Communications Magazine, IEEE, May, Vol. 48,
No. 5.

Bellmore, M. and Nemhauser, G.L. (1968) ‘The traveling salesman
problem: a survey’, Operations Research, May–June,
Vol. 16, No. 3, pp.538–558.

Burkard, R.E., Deineko, V.G., Dal, R.V., Veen, J.A.A.V.D. and
Woeginger, G.J. (1998) ‘Well-solvable special cases of the
traveling salesman problem: a survey’, SIAM Review, Vol. 40,
No. 3, pp.496–546.

Cook, W. (2005) ‘Concorde TSP solver’, available at:
http://www.tsp.gatech.edu/concorde/index.html
(accessed on 4 December 2010).

Dorigo, M. and Gambardella, L.M. (1997) ‘Ant colonies for the
traveling salesman problem’, Biosystems, July, Vol. 43,
No. 2, pp.73–81.

Dorigo, M., Birattari, M. and Stutzle, T. (2006) ‘Ant colony
optimization: artificial ants as a computational intelligence
technique’, IEEE Computational Intelligence Magazine,
November, Vol. 1, No. 4, pp.28–39.

Farmer, J.D., Packard, N. and Perelson, A. (1986) ‘The immune
system, adaptation and machine learning’, Physica D, Vol. 2,
Nos. 1–3, pp.187–204.

Galton, F. (1907) ‘Vox Populi’, Nature, Vol. 75, No. 1949,
pp.450–451.

Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001)
‘A new heuristic optimization algorithm: harmony search’,
Simulation, February, Vol. 76, No. 2, pp.60–68.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley Pub. Co., Boston,
MA, USA.

Guo, X-H., He, D-X. and Liu, G-Q. (2010) ‘An algorithm based on
chaotic genetic algorithm for 0-1 knapsack problem’,
International Conference on Biomedical Engineering and
Computer Science (ICBECS), Wuhan, China, 23–25 April.

Hristakeva, M. and Shrestha, D. (2004) ‘Solving the 0-1 knapsack
problem with genetic algorithms’, Science & Math
Undergraduate Research Symposium, Simpson College,
Indianola, Iowa.

Jun, S. and Jian, L. (2009) ‘Solving 0-1 knapsack problems via a
hybrid differential evolution’, Third International Symposium
on Intelligent Information Technology Application (IITA
2009), Nanchang, China, 21–22 November.

Karp, R.M. (1972) ‘Reducibility among combinatorial problems’,
in Miller, R.E. and Thatcher, J.W. (Eds.): Complexity of
Computer Computations, Plenum, New York.

Kostakos, V. (2009) ‘Is the crowd’s wisdom biased? A quantitative
analysis of three online communities international conference
on computational science and engineering’, CSE ’09,
Vancouver, Canada, 29–31 August.

Koza, J.R. (1990) ‘Genetic programming: a paradigm for
genetically breeding populations of computer programs to
solve problems’, Technical Report No. STAN-CS-90-1314,
Stanford University. Stanford, California.

Krishnanand, K.N. and Ghose, D. (2005) ‘Detection of multiple
source locations using a glow-worm metaphor with
applications to collective robotics’, IEEE Swarm Intelligence
Symposium (SIS’05), Pasadena, California, 8–10 June.

Liu, Y. and Liu, C. (2009) ‘A schema-guiding evolutionary
algorithm for 0-1 knapsack problem’, International
Association of Computer Science and Information Technology
– Spring Conference (IACSITSC ‘09), Singapore, Singapore,
17–20 April.

Martello, S., Pisinger, D. and Toth, P. (1999) ‘Dynamic
programming and strong bounds for the 0-1 knapsack
problem’, Management Science, March, Vol. 45, No. 3.

Mehrabian, A.R. and Lucas, C. (2006) ‘A novel numerical
optimization algorithm inspired from weed colonization’,
Ecological Informatics, December, Vol. 1, No. 4,
pp.355–366.

Melville, P. and Mooney, R.J. (2003) ‘Constructing diverse
classifier ensembles using artificial training examples’,
18th International Joint Conference on Artificial Intelligence
(IJCAI’03), Acapulco, Mexico, August.

Melville, P. and Mooney, R.J. (2004) ‘Diverse ensembles for
active learning’, 21st International Conference on Machine
Learning (ICML’04). Banff, Canada, July.

Mooney, R.J. (2007) ‘Machine learning: ensembles’, available at
http://www.cs.utexas.edu/~mooney/cs391L/slides/
ensembles.ppt (accessed on 8 January 2011).

Moore, T. and Clayton, R. (2008) ‘Evaluating the wisdom of
crowds in assessing phishing websites’, Lecture Notes in
Computer Science, Vol. 5143, pp.16–30.

Mozer, M.C., Pashler, H. and Homaei, H. (2008) ‘Optimal
predictions in everyday cognition: the wisdom of individuals
or crowds?’, Cognitive Science, October, Vol. 32, No. 7,
pp.1133–1147.

Mucherino, A. and Seref, O. (2007) ‘Monkey search: a novel
metaheuristic search for global optimization’, AIP Conference
on Data Mining, Systems Analysis and Optimization in
Biomedicine, Gainesville, FL, 28–30 March.

Narasimhan, N., Wodka, J., Wong, P. and Vasudevan, V. (2010)
‘TV answers – using the wisdom of crowds to facilitate
searches with rich media context’, 7th IEEE Consumer
Communications and Networking Conference (CCNC),
Las Vegas, Nevada, USA, 9–12 January.

Opitz, D. and Maclin, R. (1999) ‘Popular ensemble methods: an
empirical study’, Journal of Artificial Intelligence Research,
Vol. 11, pp.169–198.

Osorio, F.C.C. and Whitney, J. (2005) ‘Trust, the “wisdom of
crowds”, and societal norms: the creation, maintenance,
and reasoning about trust in peer networks’, Workshop of
the 1st International Conference on Security and Privacy
for Emerging Areas in Communication Networks,
5–9 September.

Passino, K.M. (2002) ‘Biomimicry of bacterial foraging for
distributed optimization and control’, Control Systems
Magazine, IEEE, June, Vol. 22, No. 3, pp.52–67.

Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and
Zaidi, M. (2006) ‘The bees algorithm – a novel tool for
complex optimisation problems’, Virtual International
Conference on Intelligent Production Machines and Systems
(IPROMS’06), Web Based, 13–14 July.

Qiao, S., Wang, S., Lin, Y. and Zhao, L. (2008) ‘A distributed
algorithm for 0-1 knapsack problem based on mobile agent’,
Eighth International Conference on Intelligent Systems
Design and Applications (ISDA’08), Kaohsiung City, Taiwan,
26–28 November.

 Wisdom of artificial crowds algorithm for solving NP-hard problems 369

Rabanal, P., Rodriguez, I. and Rubio, F. (2007) ‘Using river
formation dynamics to design heuristic algorithms’, Lecture
Notes in Computer Science, Vol. 4618, pp.163–177.

Reynolds, C.W. (1987) ‘Flocks, herds, and schools: a distributed
behavioral model’, 14th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH’87),
Anaheim, CA, 27–31 July.

Shiratsuchi, K., Yoshii, S. and Furukawa, M. (2006)
‘Finding unknown interests utilizing the wisdom of crowds in
a social bookmark service’, IEEE/WIC/ACM International
Conference on Intelligence and Intelligent Agent Technology,
Hong Kong, December.

Surowiecki, J. (2004) The Wisdom of Crowds: Why the Many Are
Smarter Than the Few and How Collective Wisdom Shapes
Business, Economies, Societies and Nations, Little, Brown.

Wagner, C., Schneider, C., Zhao, S. and Chen, H. (2010) ‘The
wisdom of reluctant crowds’, 43rd Hawaii International
Conference on System Sciences (HICSS’10), Honolulu, HI,
5–8 January.

Wolfram, S. (2002) A New Kind of Science, 14 May, Wolfram
Media, Inc., Canada.

Yampolskiy, R., Anderson, P., Arney, J., Misic, V. and Clarke, T.
(2004) ‘Printer model integrating genetic algorithm for
improvement of halftone patterns’, Western New York Image
Processing Workshop (WNYIPW) – IEEE Signal Processing
Society, Rochester, NY, 24 September.

Yampolskiy, R.V. (2010) ‘Application of bio-inspired algorithm to
the problem of integer factorisation’, International Journal
of Bio-Inspired Computation (IJBIC), Vol. 2, No. 2,
pp.115–123.

Yang, X.S. (2009) ‘Firefly algorithms for multimodal
optimization’, Lecture Notes in Computer Sciences,
Vol. 5792, pp.169–178.

Yang, X-S. and Deb, S. (2009) ‘Cuckoo search via Levy flights’,
World Congress on Nature and Biologically Inspired
Computing (NaBIC’09), Coimbatore, India, 9–11 December.

Yi, S.K.M., Steyvers, M., Lee, M.D. and Dry, M. (2010) ‘Wisdom
of crowds in minimum spanning tree problems’, 32nd Annual
Conference of the Cognitive Science Society, Austin, TX.

Yi, S.K.M., Steyvers, M., Lee, M.D. and Dry, M. (2010) ‘Wisdom
of the crowds in traveling salesman problems’, available at:
http://www.socsci.uci.edu/~mdlee/YiEtAl2010.pdf (accessed
on 7 January 2011).

Zhang, G-L. and Wei, Y. (2008) ‘An improved particle swarm
optimization algorithm for solving 0-1 knapsack problem’,
International Conference on Machine Learning and
Cybernetics, Kunming, China, 12–15 July.

Zhao, J.F., Huang, T.L., Pang, F. and Liu, Y.J. (2009) ‘Genetic
algorithm based on greedy strategy in the 0-1 knapsack
problem’, 3rd International Conference on Genetic and
Evolutionary Computing (WGEC ‘09), Guilin, China,
14–17 October.

Zhao, T., Yang, L. and Man, Z. (2008) ‘A MSM-PGA based on
multi-agent for solving 0-1 knapsack problem’, International
Conference on Computer Science and Information
Technology (ICCSIT ‘08), Singapore, 29 August –
2 September.

