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Abstract: This paper describes an attempt at developing an evolutionary algorithm capable of 
solving non-trivial cases of integer factorisation, which are at the heart of security behind the 
modern public key cryptography systems. After reviewing previous work in integer factorisation 
and describing the developed genetic algorithm the paper addresses issues of convergence to a 
local maxima associated with the performance of genetic algorithms. Specifically, properties and 
statistical distribution of local maxima points associated with the integer factorisation problems 
are reviewed. Finally, performance of the developed system is analysed and recommendations are 
made for future research paths. 

Keywords: evolutionary algorithm; integer factorisation; global maxima; genetic algorithm. 

Reference to this paper should be made as follows: Yampolskiy, R.V. (2010) ‘Application of 
bio-inspired algorithm to the problem of integer factorisation’, Int. J. Bio-Inspired Computation, 
Vol. 2, No. 2, pp.115–123. 

Biographical notes: Roman V. Yampolskiy received his PhD from the Department of  
Computer Science and Engineering at the University at Buffalo. There he was a recipient of a 
four year National Science Foundation IGERT fellowship. After graduating, he served as an 
Affiliate Academic at the University of London, College of London until accepting an  
Assistant Professor position at the University of Louisville in 2008. He had previously  
worked at the Laboratory for Applied Computing at the Rochester Institute of Technology  
and at the Center for Unified Biometrics and Sensors at the University at Buffalo. His  
main areas of interest are computer security, artificial intelligence, behavioural  
biometrics and intrusion detection. He is the author of over 40 publications including multiple 
books. 

 

1 Introduction 

Integer factorisation (IF) is a fundamental theoretical 
problem in mathematics and computer science. It is also a 
problem of great practical importance as security of public 
key cryptography (PKC), which is used in digital 
communications and e-commerce, is based on our inability 
to quickly factor large integers. As early as 1801 Gauss has 
stated (Knuth, 1981): 

“The problem of... resolving composite 
numbers into their prime factors, is one of  
the most important and useful in all of 
arithmetic... The dignity of science seems to 
demand that every aid to the solution of such 
an elegant and celebrated problem be zealously 
cultivated.” 

Factoring a positive integer N means finding positive 
integers p and q such that N = p * q, where both p and q are 
greater than 1. Such numbers p and q are called factors of N. 
Positive integers that can be factored are called composite 

numbers, others are known as prime numbers (Lenstra  
and Lenstra 1993). The most difficult cases of IF  
problem involve situations in which both p and q are  
prime and of similar size in terms of number of digits 
comprising them. The decision version of IF can be stated 
as: given an integer R and an integer S with 1 ≤ S ≤ R, does 
R have a factor f with 1 < f < S? This representation is useful 
because most well-studied complexity classes are defined as 
classes of decision problems. In combination with a  
binary search algorithm, a solution-function to a  
decision version of IF can solve the general case of IF in 
logarithmic number of queries (Adi Shamir, 2003). The 
difficulty of the decision version of the IF problem in terms 
of its membership in a specific complexity class remains an 
open question. IF is known to belong to both non-
deterministic polynomial time (NP) and co-NP classes, 
because both ‘yes’ and ‘no’ decisions can be verified given 
the prime factors either via polynomial time primality test 
such as AKS (Brent, 1999) or via simple multiplication of 
divisors. 
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Table 1 Existing IF approaches 
Ty

pe
 Algorithm/approach Researcher(s) or publication 

with additional information Year Complexity1 
Probabilistic 

versus 
deterministic 

Record 
number 

factorised2 

Trial division (Bressoud, 1989) - nen/2 D 15D 
Pollard’s rho (Pollard, 1975) 1975 n1/4 polylog (n) P F8 
Elliptic curve (Lenstra, 1987) 1987 ( )1  (1) (ln ln ln )o p pe +  D 67D 

Fermat’s (Mckee, 1999) 1630s en P 5D 
Euler’s (Mckee, 1996) 1770s N1/3+ε P 7D 
Special number field 
sieve 

(Lenstra and Lenstra, 1993) 1988 1/3
2/332(1 (1)) log (log log )

9
o n n

e
⎛ ⎞+ ⎜ ⎟
⎝ ⎠  

D 313D 

Pollard’s p – 1 (Pollard, 1974) 1974 B × log B × log2N P  

Sp
ec

ia
l 

Williams’ p + 1 (Williams, 1982) 1982  P  

 

Dixon’s (Dixon, 1981) 1981 ( )exp 2 2 (log loglog )n n

 

P  

Continued fraction (Lehmer and Powers, 1931) 1931 (2log log log )e n n  P  

Quadratic sieve (Pomerance, 1996) 1981 (log log log )e n n  P 129D 

General number field 
sieve 

(Elkenbracht-Huizing, 1997) 1990 1/3 2/3( (1))(log ) (log log )c o n ne +  D 200D 

G
en

er
al

 

Shanks’ square forms (Bressoud, 1989) 1970s 4 N  D  

Shor’s (Shor, 1997) 1994 1/3 2/3(log ) (log log )N Ne  D 2D 

DNA (Chang et al., 2005) 2005 (.5n)3 D  
Neural network (Meletiou et al., 2002) 2002 - P 4D 
Genetic 
programming 

(Chan, 2002) 2002 - P 4D 

TWINKLE (Shamir, 1999) 1999 Constant improvement 
of GNFS 

D 512b3 

TWIRL (Adi Shamir, 2003) 2003 Constant improvement 
of GNFS 

D 1024b4 

Oracle (Maurer and Rueppel, 1992) 1992 εn P  

A
lte

rn
at

iv
e 

Partial information (Rivest and Shamir, 1986) 1986 n/3 P  

Notes: 1N is the number we wish to factor, n is the number of digits in N, p is the smallest factor of N, e is 
2.71828182845904523536…, ε is an arbitrarelly small positive real number, B is a smoothness bound, c – constant which 
depends on the complexity measure and on the variant of the algorithm. 
2D – decimal digits, F – Fermat’s number. 
3Theoretical size, The Weizmann Institute Key Locating Engine (TWINKLE) hardware has never been constructed. 
4Theoretical size, The Weizmann Institute Relation Locator (TWIRL) hardware has never been constructed. 

 
Research in IF spans hundreds of years and demonstrates a 
great variety of approaches tried by mathematicians in their 
attempt to find a satisfactory solution to this fundamental 
problem. Table 1 summarises the most important 
achievements in the rich history of IF research. Overall 
attempted approaches can be classified into three somewhat 
overlapping categories. Special approaches are aimed at 
finding factorisations of number in a specific form as it is 
sometimes possible to take advantage of their unique 
structure in order to do much better compare to general-
form numbers. General form algorithms are designed to 
handle any type of number and as a result of their generality 

such approaches are less powerful in comparison to 
algorithms designed to take advantage of special forms. 
Finally, a greatly diverse group of alternative approaches is 
comprised of such diverse and sometimes questionable 
methods as quantum and DNA computing, neural networks, 
genetic programming and even oracles. 

With such a rich history it is not at all surprising that 
great breakthroughs have been made in the quest for IF. 
Table 2 presents a condensed list of important factorisations 
achieved in the last 20 years. It reports on record breaking 
attempts, algorithms used to produce them and gives credit 
to the scientists responsible for these great achievements. 
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Table 2 IF records by year and type 

Number Decimal digits Binary digits Factoring algorithm Type of number Factored by researcher(s) Date factored
10381+1 67 221 ECM General B. Dodson Aug. 24, 2006 
RSA100 100 330 MPQS General A.K. Lenstra April 1, 1991
RSA110 110 364 MPQS General A.K. Lenstra, et al. April 14, 1992
c116 116 383 MPQS General A.K. Lenstra et al. 1990
c2481+2241+1 118 390 QS General S. Contini et al. June 15, 1996
P13171 119 395 GNFS General S. Contini et al. Nov. 26, 1994
RSA120 120 397 MPQS General T. Denny et al. June 9, 1993
c7352+1 128 423 GNFS+FPGA General T. Shimoyama et al. Sep. 4, 2006
RSA129 129 426 MPQS General A.K. Lenstra et al. April 26, 1994
RSA130 130 430 GNFS General A.K. Lenstra et al. April 10, 1996
RSA140 140 463 GNFS General H.J.J. te Riele et al. Feb. 2, 1999
RSA150 150 496 GNFS General K. Aoki et al. April 16, 2004
RSA155 155 512 GNFS General H.J.J. te Riele et al. Aug. 22, 1999
c2953+1 158 523 GNFS General F. Bahr et al. January 2002
RSA160 160 530 GNFS General J. Franke et al. April 1, 2003
12151–1 163 542 SNFS Special H. Boender et al. July 1993
c21826+1 164 543 GNFS General K. Aoki et al. Dec. 19, 2003
RSA576 174 576 GNFS General J. Franke et al. Dec. 3, 2003
c11281+1 176 583 GNFS General K. Aoki et al. May 2005
3263341–1 186 616 SNFS Special S. Cavallar et al. Sep. 15, 1998
RSA640 193 640 GNFS General J. Franke et al. Nov. 2, 2005
RSA200 200 663 GNFS General J. Franke et al. May 9, 2005
(10211–1)/9 211 699 SNFS C S. Cavallar et al. Apr. 8, 1999
2773+1 233 774 SNFS C S. Cavallar et al. Nov. 14, 2000
2809–1 244 809 SNFS M J. Franke et al. Jan. 3, 2003
21642+1 248 822 SNFS C K. Aoki et al. Apr. 4, 2004
6353–1 275 911 SNFS C K. Aoki et al. Jan. 24, 2006
21039–1 313 1039 SNFS M K. Aoki et al. May 21, 2007

Notes: MPQS – multiple polynomial quadratic sieve (a variation of quadratic sieve (QS), GNFS – general number field sieve, 
FPGA – field programmable gate array, ECM – elliptical curve method, SNFS – special number field sieve. RSA – RSA 
security challenge number. C – Cunningham number. c – Cunningham number co-factor. P – partition number.  
M – Mersenne number. 

Source: Brent (2000), Marain (2002) and RSA (2009) 

Table 3 Fermat number factorisations by year 

Fermat number Size of factors Factoring algorithm utilised Year Individual factors found by researcher(s)
F5 3,7 Trial division 1732 Leonhard Euler 
F6 6,14 Manual computation 1880 Fortuné Landry 
F7 17,22 CFRAC 1970 M.A. Morrison and J. Brillhart
F8 16,62 Pollard’s rho 1980 R.P. Brent and J.M. Pollard

7, Trial division 1903 A.E. Western F9 
49,99 SNFS 1990 Arjen K. Lenstra et al.

8, Trial division 1953 John L. Selfridge 
10, Trial division 1962 John Brillhart 

F10 

40,252 ECM 1995 Richard P. Brent 
6,6, Trial division 1899 Allan J. C. CunninghamF11 

21,22,564 ECM 1988 Richard P. Brent 
6, Trial division 1877 I. M. Pervushin and E. Lucas

8,8, Trial division 1903 A.E. Western 
12, Trial division 1974  
16, Pollard’s p – 1 1986  

1187 Proven to be composite n/a  

F12 – partially 
factored 

 J.C. Hallyburton and J. Brillhart, Robert Baillie, n/a
Notes: F0–4(3, 5, 17, 257, 65537) are prime numbers as discovered by Pierre de Fermat. CFRAC – continued fraction factorisation 

method, ECM – elliptical curve method, SNFS – special number field sieve. 
Source: Brent (1999) 
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Table 3 also reports on record factorisations but only in the 
context of special form numbers known as Fermat’s 
numbers. It summarises factoring breakthroughs made from 
early 1700s till today and lists utilised factorisation 
algorithm for every record as well as the specific algorithm 
used to factor the number in question. 

The presented achievements in IF have a direct and 
immediate influence on security systems based on 
cryptographic encryption which relies on assumed difficulty 
of factoring. As our ability to factor large integers increases 
so does the minimum size of the keys believed to be safe 
against factorisation attacks both in symmetric and 
asymmetric cryptosystems. Table 4 outlines what is 
believed to be a secure keys size in bits for symmetric and 
asymmetric systems with respect to available hardware and 
algorithmic resource in are given time period, including 
projections up to the year 2050 (Lenstra and Verheul, 2001). 

Table 4 Suggested secure symmetric and asymmetric key sizes 
by year 

Year Key size in bits 
(symmetric) 

Key size in bits 
(asymmetric) 

1985 59 488 
1990 63 622 
1995 66 777 
2000 70 952 
2005 74 1149 
2010 78 1369 
2015 82 1613 
2020 86 1881 
2025 89 2174 
2030 93 2493 
2035 97 2840 
2040 101 3214 
2045 105 3616 
2050 109 4047 

Source: Lenstra and Verheul (2001) 

2 Genetic algorithm 

Inspired by evolution, genetic algorithms constitute a 
powerful set of optimisation tools that have demonstrated 
good performance on a wide variety of problems including 
some classical NP-complete problems such as the travelling 
salesperson problem (TSP) and multiple sequence 
alignment (MSA). GAs search the solution space using a 
simulated ‘Darwinian’ evolution that favours survival of the 
fittest individuals. Survival of such population members is 
ensured by the fact that fitter individuals get a higher chance 
at reproduction and survive to the next generation in larger 
numbers (Goldberg, 1989). 

GAs have been shown to solve linear and nonlinear 
problems by exploring all regions of the state space and 
exponentially exploiting promising areas through standard 

genetic operators eventually converging populations of 
candidate solutions to a single global optimum. However, 
some optimisation problems contain numerous local optima 
which are difficult to distinguish from the global maximum 
and therefore result in suboptimal solutions. As a 
consequence, several population diversity mechanisms have 
been proposed to delay or counteract the convergence of the 
population by maintaining a diverse population of members 
throughout its search. 

The proposed GA is generational (Yampolskiy et al., 
2004): 

1 a population of N possible solutions is created 

2 the fitness value of each individual is determined 

3 repeat the following steps N/2 times to create the next 
generation 
a choose two parents using tournament selection 
b with probability pc, crossover the parents to create 

two children, otherwise simply pass parents to the 
next generation 

c with probability pm for each child, mutate that child 
d place the two new children into the next generation 

4 repeat new generation creation until a satisfactory 
solution is found or the search time is exhausted. 

2.1 Solution representation 

Potential solutions representing successive approximations 
to factors p and q are represented as a single string of digits 
holding values for numbers comprising both p and q with 
potential leading zeroes for each. Sample string representing 
makeup of an individual member of the genetic pool 
follows: 

1 2 3 4 1 2 3 4/2 /2        N Np p p p p q q q q q⎡ ⎤⎣ ⎦…  (1) 

Since we are interested in solving the most difficult cases of 
IF in which size of p and q in terms of number of digits is 
essentially the same, without the loss of generality we are 
assuming that both p and q will be equal in size to 1/2 size 
of N. This assumption can be trivially overcome should the 
need arise to factor numbers in different (less challenging) 
format. 

2.2 Creation of the initial population 

Initial population necessary to begin the genetic search can 
be generated in a number of ways. For example, after the 
size of the initial population is decided on, the necessary 
number of individuals can be produced in a random fashion. 
Pseudo-random number generator can be used to decide the 
value of every element in the string representing each 
potential solution. Alternatively, a number of individuals in 
the population can be seeded with pre-computed high-
fitness strings obtained from prior runs of the genetic 
algorithm. 
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2.3 Fitness function 

The most important part of any evolutionary algorithm and 
certainly most difficult to design is the fitness function. A 
good fitness function provides progressive rewards to partial 
solutions while limiting the value of strings which are 
converging towards local maxima or do not evolve towards 
an acceptable solution. Our proposed fitness evaluations 
schema measures the degree of similarity between the 
number being factored and the product of evolving factors p 
and q in terms of placement and value of constituting 
numbers as well as overall properties of the numbers such 
as size and parity. 

2.4 Crossover operation 

A fundamental property of any evolutionary system is the 
ability to exchange genetic material between superior 
individuals in the population. In our case it is necessary in 
order to pass the good properties of the parent solutions on 
to their offspring. We investigated a number of crossover 
methods which have the necessary property of preserving 
potential partial solutions while allowing for significant 
genetic diversity to remain in the solution pool. In general 
crossover operation is accomplished by exchanging subsets 
of varying size of numbers between individuals selected to 
be “parents” based on their superior fitness. 

2.5 Mutation operation 

Occasional genetic mutations are necessary to provide 
genetic diversity to an otherwise overly homogeneous 
population produced by the selection of the fittest 
individuals and allow for the broader exploration of search 
space to take place. By applying the mutation operation a 
certain number of times we can achieve any degree of 
genetic diversity we desire. In the case of binary 
representation of solution strings mutation can be achieved 
by simply flipping a random bit in the chromosomal 
representation of p or q. In the case of solutions represented 
in non-binary bases, mutation operation transfers a chosen 
digit to another digit legitimate under the selected encoding. 

2.6 Proof of concept 

To date no experimental results on application of genetic 
algorithms towards IF problem have been published, though 
some works utilising computational intelligence approaches 
has appeared (Chan, 2002), (Meletiou et al., 2002). This can 
be explained by difficulty evolution inspired algorithms face 
in solving problems in which the only measure of fitness is 
a binary – correct/incorrect result, since there is no 
possibility for the algorithm to converge on a solution via 
hill climbing. While it is easy to assume that solutions to IF 
problem only exhibit such binary information (a number is a 
factor or is not a factor), it is actually not the case as can be 
seen from the following trivial example, which 
demonstrates a series of partial solutions with gradual 
increase in fitness value of factor-approximating numbers. 

In the example in Table 5 given a number  
N = 4885944577, it is obvious to see that partial information 
about the numbers comprising p and q is indeed leaked by 
the relationship between number we are given to factor, and 
product of potential candidates to values of p and q. In fact 
as the size of N increases the degree of inter-influence of 
digits of N located at a distance from each other further 
diminishes allowing for a more independent evaluation of 
partial solutions. 

Table 5 Partial solutions to a sample factorisation problem with 
increasing fitness 

Potential solution Approximation 
of N 

Fitness: number of 
matching digits 

p = 14531, q = 73341 1065718071 1 
p = 54511, q = 43607 2377061177 2 
p = 84621, q = 43637 3692606577 3 
p = 84621, q = 41637 3523364577 4 
p = 84621, q = 51637 4369574577 5 
p = 94621, q = 51637 4885944577 10 

3 Test data 

Test data was readily available in order to properly evaluate 
performance of our algorithm. In addition to being able to 
quickly generate test numbers of any length, a third party set 
of challenge numbers was also available. Known as RSA 
numbers (after the Rivest, Shamir and Adleman public 
encryption algorithm) they provided an independent third 
party evaluation of our genetic algorithm. 

RSA numbers are difficult to-factor composite numbers 
having exactly two prime factors (aka, semiprimes), similar 
to the modulus of an RSA key pair. The RSA challenge 
numbers were generated by the RSA Laboratories, to learn 
about the actual difficulty of factoring large numbers of the 
type used in RSA keys. There are 54 RSA number ranging 
in size from 100 decimal digits (330 binary) to 617 decimal 
digits (2048 binary). The first RSA numbers generated, 
from RSA-100 to RSA-500, were labeled according to their 
number of decimal digits; later, beginning with RSA-576, 
binary digits are counted instead. An exception to the rule is 
RSA-617, which was created prior to the change in the 
numbering scheme (Brent, 2000). The RSA challenge 
numbers were generated using a secure process that 
guarantees that the factors of each number cannot be 
obtained by any method other than factoring the published 
value. No one, including RSA Laboratories, knows the 
factors of any of the challenge numbers. 

The generation took place on a Compaq laptop PC with 
no network connection of any kind. The process proceeded 
as follows (retrieved 5 February 2009): 

• First, 30,000 random bytes were generated using a 
ComScire QNG hardware random number generator, 
attached to the laptop’s parallel port. 
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• The random bytes were used as the seed values for the 
B_GenerateKeyPair function, in version 4.0 of the RSA 
BSAFE library. The private portion of the generated 
key pair was discarded. The public portion was 
exported, in DER format to a disk file. 

• The moduli were extracted from the files and converted 
to decimal representation for posting on the web. 

• The laptop’s hard drive was destroyed. 

4 Experimental results 

Described genetic algorithm was programmed in Java, as a 
part of general framework, capable of being adapted to 
evolve solutions to numerous optimisation problems in 
addition to IF. We have begun our experiments while still 
developing the framework and the algorithm did remarkably 
well factoring small integers as the part of the debugging 
process. Once the algorithm was completed we decided to 
conduct an experiment with the smallest of the RSA 
challenge numbers but the algorithm failed to converge on a 
solution regardless of the population size, crossover type, 
mutation rate or the number of generations evolved. In fact, 
an improvement in fitness level of the best individual in 
each generation showed very quick immediate progress only 
to end up in a local maxima point and be unable to escape it 
even in the long run. 

Our analysis shows that the difficulty comes from  
local maxima points pervasive in the IF domain. The rest of 
this section attempts to address the nature of our finding.  
A function f defined for real numbers is said to have a  
local maximum at the point y, if there exists some ε > 0, 
such that f(y) ≥ f(x) when |x − y| < ε. A function has a  
global maximum point at y, if f(y) ≥ f(x) for all x.  
Any global maximum point is also a local maximum  
point; however the opposite is not true, a local maximum 
point doesn’t have to be a global maximum point  
(see Figure 1). In semiprime numbers such as  
those presented by RSA challenge (numbers ending in  
1, 3, 7 or 9) the local maxima points come from  
numbers which are also a product of at least two  
integers and which match the number to be factored in 
terms of its constituting digits to a certain degree. For 
example, we might be interested in factoring number  
N = 15194323 = 3889 * 3907, but we might run into a  
local maxima point represented by a different  
number matching almost all of N’s digits except one: 
15794323 = 3733 * 4231. 

Such local maxima are frequent in the IF domain; in 
fact, we were able to show that given any semiprime 
number N with n decimal digits there are exactly 2 * 10n–1 
unique pairs of numbers pi and qi up to n digits each, which 
if multiplied, have a product matching all n digits of N 
precisely. Same relationship also holds true for the prime 
numbers which obviously don’t have a global maxima point 
(see Figure 2). For example for N = 71 (n = 2), that number 
is 2 * 102–1 = 2 * 101 = 20, or to list explicitly:  

(01 * 71 = 71), (03 * 57 = 171), (07 * 53 = 371),  
(09 * 19 = 171), (11 * 61 = 671), (13 * 67 = 871), (17 * 63 
= 1071), (21 * 51 = 1071), (23 * 77 = 1771),  
(27 * 73 = 1971), (29 * 99 = 2871), (31 * 41 = 1271), (33 * 
87 = 2871), (37 * 83 = 3071), (39 * 89 = 3471),  
(43 * 97 = 4171), (47 * 93 = 4371), (49 * 79 = 3871),  
(69 * 59 = 4071), (81 * 91 = 7371). If plotted local maxima 
p/q-pairs form a pattern, different for each specific IF 
problem. Some examples are given in the figure below. It is 
easy to see that even those highest of all the local maxima 
points already comprise 20% of the total search space and 
that percentage does not even include smaller local maxima 
points. 

The number of local maxima points associated with IF 
will completely overwhelm any hill climbing algorithm 
making it unlikely for any such algorithm to reliably  
find solutions to non-trivial cases of IF. Realising that  
our approach without fundamental modifications is unlikely 
to successfully factor a hundred-plus digit RSA numbers  
we have generated a sequence of progressively larger 
semiprimes (beginning with N = 4) in order to  
determine overall capability of our approach. The best result 
achieved by our algorithm was a factorisation of a 12D 
semiprime (103694293567 = 143509 * 722563). This result 
took a little over 6 hours on a Intel 2 core 1.86 GHz 
processor with 2 GB of RAM and was achieved with a 
population consisting of 500 individuals, two point 
crossover, mutation rate of 0.3% and genome represented 
via decimal digits. 

Additional examples of integers factored by our 
algorithm along with complete information about the 
specific run and evolving fitness values follow. Runs 1 and 
2 are successfully factorisations of a 6D and 8D numbers. 
3rd run represents an incomplete attempt to factor RSA100 
challenge number which is two large for our algorithm to 
handle. 

Run 1:  Factoring :  213443
Fitness value of 9.0,  829 *  357  295953
Fitness value of 10.0,  589 *  357  210273
Fitness value of 11.0,  569 *  757  430733
Fitness value of 12.0,  587 *  364  213668
Fitness value

=
=
=
=

of 13.0,  281 *  761  213841
Fitness value of 14.0,  407 *  549  223443
Solution :  463 *  461  213443

=
=

=

 

Run 2 :  Factoring :  15194323
Fitness value of 10.0,  9257 *  5768  53394376
Fitness value of 12.0,  3680 *  4304  15838720
Fitness value of 13.0,  2821 *  3663  10333323
Fitness value of 14.0,  4081 *  3683  15

=
=
=
= 030323

Fitness value of 16.0,  5951 *  4973  29594323
Fitness value of 17.0,  8151 *  4373  35644323
Fitness value of 18.0,  3351 *  4773  15994323
Fitness value of 19.0,  4399 *  4477  19694323
Solution :  3889

=
=
=
=

 *  3907  15194323=
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Run 3 :  Factoring :  RSA100  
1522605027922533360535618378132637429718068114961380688657908494580122963258952897654000350692006139
Fitness value of 47.0,38536247742361858332211759120366062109212955254273 

=

*  
88791826261972849252172269232799807166287594359849  
3421703814328137574624523768102107729194982296041569920469801474438581435631584972111888124456884777
Fitness value of 59.0,  9637862753656719886928

=

2246326871973487323674615512*  
75614263957233789672690588220383886327654200801643  
7287598982385913172756161871197118736827069184066856697551032897625007120244968629136504440202886216
Fitness value of 

=

62.0,48199401972071282251803726368545070325588916526303 *  
70708566515138205776465307238006337794546336781413  
34081106203320858691977163371512357896853735442965371055698919956118243711280508886243083

=
05376006139

Fitness value of 63.0,21080432533027225787136926665545897372079112976303 *  
67682974957663277570968497946626498478462136831413  
1426786387229591976435444818920257308788699832810477894051925

=
443935895494758336204333662320175006139

Fitness value of 67.0,45112401168824468808230926665549874366675110976303 *  
67668776956683277540868497946626468478423576831413  
305270101267360097103266524899389

=
5564649074246547246319805268649945429766237000108104186561669006139

Fitness value of 68.0,25743321584521229357380737164870882613268481976303 *  
58685714622657176248858420970617418486441956831413  
15107

=
65223948503618079926074144533957816278632327321814241264433130665992180262097502965374032006139

Fitness value of 70.0, 25813763273880186803388247655718727008128401976303 *  
58985134697707176208559700672111418385661756831413  
1522628303764549399678057880563431125881934074701697134527917638006039415690511485317944440392006139
Fitness value of 76.0,25813743413280242019730531661406881034808401976303 *  
58

=

985440647027466278871622921691418486141856831413  
1522635029981637914707920352720567016197069957773863331657338852580811786956950790601166350692006139
Fitness value of 78.0,258132634195209868033882476

=

55718887008128401976303 *  
58985440747027466278871622921691418486141856831413  
1522606719919566764505893647063057356713068673798130276598105562605529409648749894817067510692006139
Fitness value of 82.0

=

, 25813253189380486182388462535798583024108401976303 *  
58985445625025484832437795936396136486141856831413  
152260624240721834157954425275860881286974241804370142658720375432734242341595135498504725069

=
2006139

Fitness value of 87.0,25813253119499621153488161635698083525108401976303 *  
58985224641070688267644391936410288482841856831413  
15226005339705038653981783791049893614187187545801638281101121974

=
83138227249675534557160350692006139

…
 

 
While obviously not a practical approach to factor integers 
of the size required in modern cryptographic applications 
our approach did outperformed algorithms based on genetic 
programming (Finkel, 2003; Chan, 2002) and neural 
networks (Jansen and Nakayama, 2005; Meletiou et al., 
2002; Laskari et al., 2006) as well as the best results 
reported so far for the Shor’s algorithm (Shor, 1997). We 
will continue with our experiments and hope that the next 
version of our algorithm will be competitive with other 
approaches as well. Next version of our algorithm will be 
based on distributed voting between members of the genetic 
pool with respect to specific digits making up the solution. 

For example if 45% of all top ranked potential solution have 
digit ‘8’ in location 2 eight will be selected as a part of the 
final solution in the said location for this particular iteration 
of the genetic algorithm. 

The proposed genetic algorithm has outperformed 
genetic programming approach because GP attempts to 
come up with a universal solution for all instances of IF 
instead of trying to find an optimal solution for a specific 
problem which is easier as our algorithm demonstrates by 
producing better results. Neural Network approach has its 
own shortcomings namely its dependency on specific digits 
as first layer inputs and structure designed to accommodate 
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numbers comprised of a specific amount of digits. Such 
rigidness prevents NN from performing competitively with 
our GA approach. 

Figure 1 Global maximum and local maxima 

 

Figure 2 Top – local maxima distributions for 7841 (prime 
number) and bottom – 8883 (semiprime) 

 

 

5 Conclusions and future work 

We have developed a Java-based genetic algorithm 
framework easily adaptable to any optimisation problem 
and applied it to the problem of IF. We were able to 
demonstrate that the IF problem is not an all-or-nothing 
problem with only right/wrong answer and no partial 
solutions. Unfortunately, IF also has an extremely high 
number of local maxima points which we were able to show 
represent well over 20% of the total solution space. This 
property makes a straightforward hill climbing genetic 
algorithm incapable of solving a non-trivial instance of an 
IF problem. 

In the future we propose to develop a mathematical 
basis for analysis and evaluation of different types of local 
maxima associated with specific IF problems and 
incorporation of such data into the fitness functions in order 
to avoid convergence of the genetic algorithm to a 
suboptimal solution. More specifically we suggest 
investigating the types of local maxima pattern distributions 
seen for different sub-types of IF challenge numbers as well 
as investigate statistically likely locations of global 
maximum within such patterns. Additionally, patterns in 
spatial distribution of local maxima points can be explored 
as a tool for image sub-sampling or data compression. 

One of the challenges associated with successful 
application of genetic algorithms is very long execution 
times required to evolve acceptable solutions to real world 
problems. GAs can be very demanding in terms of 
computational load and memory requirements with fitness 
evaluation usually being the most expensive step. Numerous 
parallel genetic algorithms have been proposed and in a 
multitude of problem domains they demonstrate superior 
performance in comparison to serial GAs (Nowostawski and 
Poli, 1999). This happens both because of larger amount of 
computational resources being available and also because of 
higher degree of genetic diversity producible by multiple 
independent populations evolving simultaneously and only 
periodically sharing code of selected (not necessarily fittest) 
individuals. In the future experiments we will port our 
genetic algorithm framework to a parallel architecture along 
side with local maxima conscious fitness function. 
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