
Int. J. Bio-Inspired Computation, Vol. 2, No. 2, 2010 115

Copyright © 2010 Inderscience Enterprises Ltd.

Application of bio-inspired algorithm to the problem
of integer factorisation

Roman V. Yampolskiy
Speed School of Engineering,
Computer Engineering and Computer Science,
University of Louisville,
Louisville, KY 40292, USA
E-mail: roman.yampolskiy@louisville.edu

Abstract: This paper describes an attempt at developing an evolutionary algorithm capable of
solving non-trivial cases of integer factorisation, which are at the heart of security behind the
modern public key cryptography systems. After reviewing previous work in integer factorisation
and describing the developed genetic algorithm the paper addresses issues of convergence to a
local maxima associated with the performance of genetic algorithms. Specifically, properties and
statistical distribution of local maxima points associated with the integer factorisation problems
are reviewed. Finally, performance of the developed system is analysed and recommendations are
made for future research paths.

Keywords: evolutionary algorithm; integer factorisation; global maxima; genetic algorithm.

Reference to this paper should be made as follows: Yampolskiy, R.V. (2010) ‘Application of
bio-inspired algorithm to the problem of integer factorisation’, Int. J. Bio-Inspired Computation,
Vol. 2, No. 2, pp.115–123.

Biographical notes: Roman V. Yampolskiy received his PhD from the Department of
Computer Science and Engineering at the University at Buffalo. There he was a recipient of a
four year National Science Foundation IGERT fellowship. After graduating, he served as an
Affiliate Academic at the University of London, College of London until accepting an
Assistant Professor position at the University of Louisville in 2008. He had previously
worked at the Laboratory for Applied Computing at the Rochester Institute of Technology
and at the Center for Unified Biometrics and Sensors at the University at Buffalo. His
main areas of interest are computer security, artificial intelligence, behavioural
biometrics and intrusion detection. He is the author of over 40 publications including multiple
books.

1 Introduction

Integer factorisation (IF) is a fundamental theoretical
problem in mathematics and computer science. It is also a
problem of great practical importance as security of public
key cryptography (PKC), which is used in digital
communications and e-commerce, is based on our inability
to quickly factor large integers. As early as 1801 Gauss has
stated (Knuth, 1981):

“The problem of... resolving composite
numbers into their prime factors, is one of
the most important and useful in all of
arithmetic... The dignity of science seems to
demand that every aid to the solution of such
an elegant and celebrated problem be zealously
cultivated.”

Factoring a positive integer N means finding positive
integers p and q such that N = p * q, where both p and q are
greater than 1. Such numbers p and q are called factors of N.
Positive integers that can be factored are called composite

numbers, others are known as prime numbers (Lenstra
and Lenstra 1993). The most difficult cases of IF
problem involve situations in which both p and q are
prime and of similar size in terms of number of digits
comprising them. The decision version of IF can be stated
as: given an integer R and an integer S with 1 ≤ S ≤ R, does
R have a factor f with 1 < f < S? This representation is useful
because most well-studied complexity classes are defined as
classes of decision problems. In combination with a
binary search algorithm, a solution-function to a
decision version of IF can solve the general case of IF in
logarithmic number of queries (Adi Shamir, 2003). The
difficulty of the decision version of the IF problem in terms
of its membership in a specific complexity class remains an
open question. IF is known to belong to both non-
deterministic polynomial time (NP) and co-NP classes,
because both ‘yes’ and ‘no’ decisions can be verified given
the prime factors either via polynomial time primality test
such as AKS (Brent, 1999) or via simple multiplication of
divisors.

116 R.V. Yampolskiy

Table 1 Existing IF approaches
Ty

pe
 Algorithm/approach Researcher(s) or publication

with additional information Year Complexity1
Probabilistic

versus
deterministic

Record
number

factorised2

Trial division (Bressoud, 1989) - nen/2 D 15D
Pollard’s rho (Pollard, 1975) 1975 n1/4 polylog (n) P F8
Elliptic curve (Lenstra, 1987) 1987 ()1 (1) (ln ln ln)o p pe + D 67D

Fermat’s (Mckee, 1999) 1630s en P 5D
Euler’s (Mckee, 1996) 1770s N1/3+ε P 7D
Special number field
sieve

(Lenstra and Lenstra, 1993) 1988 1/3
2/332(1 (1)) log (log log)

9
o n n

e
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

D 313D

Pollard’s p – 1 (Pollard, 1974) 1974 B × log B × log2N P

Sp
ec

ia
l

Williams’ p + 1 (Williams, 1982) 1982 P

Dixon’s (Dixon, 1981) 1981 ()exp 2 2 (log loglog)n n

P

Continued fraction (Lehmer and Powers, 1931) 1931 (2log log log)e n n P

Quadratic sieve (Pomerance, 1996) 1981 (log log log)e n n P 129D

General number field
sieve

(Elkenbracht-Huizing, 1997) 1990 1/3 2/3((1))(log) (log log)c o n ne + D 200D

G
en

er
al

Shanks’ square forms (Bressoud, 1989) 1970s 4 N D

Shor’s (Shor, 1997) 1994 1/3 2/3(log) (log log)N Ne D 2D

DNA (Chang et al., 2005) 2005 (.5n)3 D
Neural network (Meletiou et al., 2002) 2002 - P 4D
Genetic
programming

(Chan, 2002) 2002 - P 4D

TWINKLE (Shamir, 1999) 1999 Constant improvement
of GNFS

D 512b3

TWIRL (Adi Shamir, 2003) 2003 Constant improvement
of GNFS

D 1024b4

Oracle (Maurer and Rueppel, 1992) 1992 εn P

A
lte

rn
at

iv
e

Partial information (Rivest and Shamir, 1986) 1986 n/3 P

Notes: 1N is the number we wish to factor, n is the number of digits in N, p is the smallest factor of N, e is
2.71828182845904523536…, ε is an arbitrarelly small positive real number, B is a smoothness bound, c – constant which
depends on the complexity measure and on the variant of the algorithm.
2D – decimal digits, F – Fermat’s number.
3Theoretical size, The Weizmann Institute Key Locating Engine (TWINKLE) hardware has never been constructed.
4Theoretical size, The Weizmann Institute Relation Locator (TWIRL) hardware has never been constructed.

Research in IF spans hundreds of years and demonstrates a
great variety of approaches tried by mathematicians in their
attempt to find a satisfactory solution to this fundamental
problem. Table 1 summarises the most important
achievements in the rich history of IF research. Overall
attempted approaches can be classified into three somewhat
overlapping categories. Special approaches are aimed at
finding factorisations of number in a specific form as it is
sometimes possible to take advantage of their unique
structure in order to do much better compare to general-
form numbers. General form algorithms are designed to
handle any type of number and as a result of their generality

such approaches are less powerful in comparison to
algorithms designed to take advantage of special forms.
Finally, a greatly diverse group of alternative approaches is
comprised of such diverse and sometimes questionable
methods as quantum and DNA computing, neural networks,
genetic programming and even oracles.

With such a rich history it is not at all surprising that
great breakthroughs have been made in the quest for IF.
Table 2 presents a condensed list of important factorisations
achieved in the last 20 years. It reports on record breaking
attempts, algorithms used to produce them and gives credit
to the scientists responsible for these great achievements.

 Application of bio-inspired algorithm to the problem of integer factorisation 117

Table 2 IF records by year and type

Number Decimal digits Binary digits Factoring algorithm Type of number Factored by researcher(s) Date factored
10381+1 67 221 ECM General B. Dodson Aug. 24, 2006
RSA100 100 330 MPQS General A.K. Lenstra April 1, 1991
RSA110 110 364 MPQS General A.K. Lenstra, et al. April 14, 1992
c116 116 383 MPQS General A.K. Lenstra et al. 1990
c2481+2241+1 118 390 QS General S. Contini et al. June 15, 1996
P13171 119 395 GNFS General S. Contini et al. Nov. 26, 1994
RSA120 120 397 MPQS General T. Denny et al. June 9, 1993
c7352+1 128 423 GNFS+FPGA General T. Shimoyama et al. Sep. 4, 2006
RSA129 129 426 MPQS General A.K. Lenstra et al. April 26, 1994
RSA130 130 430 GNFS General A.K. Lenstra et al. April 10, 1996
RSA140 140 463 GNFS General H.J.J. te Riele et al. Feb. 2, 1999
RSA150 150 496 GNFS General K. Aoki et al. April 16, 2004
RSA155 155 512 GNFS General H.J.J. te Riele et al. Aug. 22, 1999
c2953+1 158 523 GNFS General F. Bahr et al. January 2002
RSA160 160 530 GNFS General J. Franke et al. April 1, 2003
12151–1 163 542 SNFS Special H. Boender et al. July 1993
c21826+1 164 543 GNFS General K. Aoki et al. Dec. 19, 2003
RSA576 174 576 GNFS General J. Franke et al. Dec. 3, 2003
c11281+1 176 583 GNFS General K. Aoki et al. May 2005
3263341–1 186 616 SNFS Special S. Cavallar et al. Sep. 15, 1998
RSA640 193 640 GNFS General J. Franke et al. Nov. 2, 2005
RSA200 200 663 GNFS General J. Franke et al. May 9, 2005
(10211–1)/9 211 699 SNFS C S. Cavallar et al. Apr. 8, 1999
2773+1 233 774 SNFS C S. Cavallar et al. Nov. 14, 2000
2809–1 244 809 SNFS M J. Franke et al. Jan. 3, 2003
21642+1 248 822 SNFS C K. Aoki et al. Apr. 4, 2004
6353–1 275 911 SNFS C K. Aoki et al. Jan. 24, 2006
21039–1 313 1039 SNFS M K. Aoki et al. May 21, 2007

Notes: MPQS – multiple polynomial quadratic sieve (a variation of quadratic sieve (QS), GNFS – general number field sieve,
FPGA – field programmable gate array, ECM – elliptical curve method, SNFS – special number field sieve. RSA – RSA
security challenge number. C – Cunningham number. c – Cunningham number co-factor. P – partition number.
M – Mersenne number.

Source: Brent (2000), Marain (2002) and RSA (2009)

Table 3 Fermat number factorisations by year

Fermat number Size of factors Factoring algorithm utilised Year Individual factors found by researcher(s)
F5 3,7 Trial division 1732 Leonhard Euler
F6 6,14 Manual computation 1880 Fortuné Landry
F7 17,22 CFRAC 1970 M.A. Morrison and J. Brillhart
F8 16,62 Pollard’s rho 1980 R.P. Brent and J.M. Pollard

7, Trial division 1903 A.E. Western F9
49,99 SNFS 1990 Arjen K. Lenstra et al.

8, Trial division 1953 John L. Selfridge
10, Trial division 1962 John Brillhart

F10

40,252 ECM 1995 Richard P. Brent
6,6, Trial division 1899 Allan J. C. CunninghamF11

21,22,564 ECM 1988 Richard P. Brent
6, Trial division 1877 I. M. Pervushin and E. Lucas

8,8, Trial division 1903 A.E. Western
12, Trial division 1974
16, Pollard’s p – 1 1986

1187 Proven to be composite n/a

F12 – partially
factored

 J.C. Hallyburton and J. Brillhart, Robert Baillie, n/a
Notes: F0–4(3, 5, 17, 257, 65537) are prime numbers as discovered by Pierre de Fermat. CFRAC – continued fraction factorisation

method, ECM – elliptical curve method, SNFS – special number field sieve.
Source: Brent (1999)

118 R.V. Yampolskiy

Table 3 also reports on record factorisations but only in the
context of special form numbers known as Fermat’s
numbers. It summarises factoring breakthroughs made from
early 1700s till today and lists utilised factorisation
algorithm for every record as well as the specific algorithm
used to factor the number in question.

The presented achievements in IF have a direct and
immediate influence on security systems based on
cryptographic encryption which relies on assumed difficulty
of factoring. As our ability to factor large integers increases
so does the minimum size of the keys believed to be safe
against factorisation attacks both in symmetric and
asymmetric cryptosystems. Table 4 outlines what is
believed to be a secure keys size in bits for symmetric and
asymmetric systems with respect to available hardware and
algorithmic resource in are given time period, including
projections up to the year 2050 (Lenstra and Verheul, 2001).

Table 4 Suggested secure symmetric and asymmetric key sizes
by year

Year Key size in bits
(symmetric)

Key size in bits
(asymmetric)

1985 59 488
1990 63 622
1995 66 777
2000 70 952
2005 74 1149
2010 78 1369
2015 82 1613
2020 86 1881
2025 89 2174
2030 93 2493
2035 97 2840
2040 101 3214
2045 105 3616
2050 109 4047

Source: Lenstra and Verheul (2001)

2 Genetic algorithm

Inspired by evolution, genetic algorithms constitute a
powerful set of optimisation tools that have demonstrated
good performance on a wide variety of problems including
some classical NP-complete problems such as the travelling
salesperson problem (TSP) and multiple sequence
alignment (MSA). GAs search the solution space using a
simulated ‘Darwinian’ evolution that favours survival of the
fittest individuals. Survival of such population members is
ensured by the fact that fitter individuals get a higher chance
at reproduction and survive to the next generation in larger
numbers (Goldberg, 1989).

GAs have been shown to solve linear and nonlinear
problems by exploring all regions of the state space and
exponentially exploiting promising areas through standard

genetic operators eventually converging populations of
candidate solutions to a single global optimum. However,
some optimisation problems contain numerous local optima
which are difficult to distinguish from the global maximum
and therefore result in suboptimal solutions. As a
consequence, several population diversity mechanisms have
been proposed to delay or counteract the convergence of the
population by maintaining a diverse population of members
throughout its search.

The proposed GA is generational (Yampolskiy et al.,
2004):

1 a population of N possible solutions is created

2 the fitness value of each individual is determined

3 repeat the following steps N/2 times to create the next
generation
a choose two parents using tournament selection
b with probability pc, crossover the parents to create

two children, otherwise simply pass parents to the
next generation

c with probability pm for each child, mutate that child
d place the two new children into the next generation

4 repeat new generation creation until a satisfactory
solution is found or the search time is exhausted.

2.1 Solution representation

Potential solutions representing successive approximations
to factors p and q are represented as a single string of digits
holding values for numbers comprising both p and q with
potential leading zeroes for each. Sample string representing
makeup of an individual member of the genetic pool
follows:

1 2 3 4 1 2 3 4/2 /2 N Np p p p p q q q q q⎡ ⎤⎣ ⎦… (1)

Since we are interested in solving the most difficult cases of
IF in which size of p and q in terms of number of digits is
essentially the same, without the loss of generality we are
assuming that both p and q will be equal in size to 1/2 size
of N. This assumption can be trivially overcome should the
need arise to factor numbers in different (less challenging)
format.

2.2 Creation of the initial population

Initial population necessary to begin the genetic search can
be generated in a number of ways. For example, after the
size of the initial population is decided on, the necessary
number of individuals can be produced in a random fashion.
Pseudo-random number generator can be used to decide the
value of every element in the string representing each
potential solution. Alternatively, a number of individuals in
the population can be seeded with pre-computed high-
fitness strings obtained from prior runs of the genetic
algorithm.

 Application of bio-inspired algorithm to the problem of integer factorisation 119

2.3 Fitness function

The most important part of any evolutionary algorithm and
certainly most difficult to design is the fitness function. A
good fitness function provides progressive rewards to partial
solutions while limiting the value of strings which are
converging towards local maxima or do not evolve towards
an acceptable solution. Our proposed fitness evaluations
schema measures the degree of similarity between the
number being factored and the product of evolving factors p
and q in terms of placement and value of constituting
numbers as well as overall properties of the numbers such
as size and parity.

2.4 Crossover operation

A fundamental property of any evolutionary system is the
ability to exchange genetic material between superior
individuals in the population. In our case it is necessary in
order to pass the good properties of the parent solutions on
to their offspring. We investigated a number of crossover
methods which have the necessary property of preserving
potential partial solutions while allowing for significant
genetic diversity to remain in the solution pool. In general
crossover operation is accomplished by exchanging subsets
of varying size of numbers between individuals selected to
be “parents” based on their superior fitness.

2.5 Mutation operation

Occasional genetic mutations are necessary to provide
genetic diversity to an otherwise overly homogeneous
population produced by the selection of the fittest
individuals and allow for the broader exploration of search
space to take place. By applying the mutation operation a
certain number of times we can achieve any degree of
genetic diversity we desire. In the case of binary
representation of solution strings mutation can be achieved
by simply flipping a random bit in the chromosomal
representation of p or q. In the case of solutions represented
in non-binary bases, mutation operation transfers a chosen
digit to another digit legitimate under the selected encoding.

2.6 Proof of concept

To date no experimental results on application of genetic
algorithms towards IF problem have been published, though
some works utilising computational intelligence approaches
has appeared (Chan, 2002), (Meletiou et al., 2002). This can
be explained by difficulty evolution inspired algorithms face
in solving problems in which the only measure of fitness is
a binary – correct/incorrect result, since there is no
possibility for the algorithm to converge on a solution via
hill climbing. While it is easy to assume that solutions to IF
problem only exhibit such binary information (a number is a
factor or is not a factor), it is actually not the case as can be
seen from the following trivial example, which
demonstrates a series of partial solutions with gradual
increase in fitness value of factor-approximating numbers.

In the example in Table 5 given a number
N = 4885944577, it is obvious to see that partial information
about the numbers comprising p and q is indeed leaked by
the relationship between number we are given to factor, and
product of potential candidates to values of p and q. In fact
as the size of N increases the degree of inter-influence of
digits of N located at a distance from each other further
diminishes allowing for a more independent evaluation of
partial solutions.

Table 5 Partial solutions to a sample factorisation problem with
increasing fitness

Potential solution Approximation
of N

Fitness: number of
matching digits

p = 14531, q = 73341 1065718071 1
p = 54511, q = 43607 2377061177 2
p = 84621, q = 43637 3692606577 3
p = 84621, q = 41637 3523364577 4
p = 84621, q = 51637 4369574577 5
p = 94621, q = 51637 4885944577 10

3 Test data

Test data was readily available in order to properly evaluate
performance of our algorithm. In addition to being able to
quickly generate test numbers of any length, a third party set
of challenge numbers was also available. Known as RSA
numbers (after the Rivest, Shamir and Adleman public
encryption algorithm) they provided an independent third
party evaluation of our genetic algorithm.

RSA numbers are difficult to-factor composite numbers
having exactly two prime factors (aka, semiprimes), similar
to the modulus of an RSA key pair. The RSA challenge
numbers were generated by the RSA Laboratories, to learn
about the actual difficulty of factoring large numbers of the
type used in RSA keys. There are 54 RSA number ranging
in size from 100 decimal digits (330 binary) to 617 decimal
digits (2048 binary). The first RSA numbers generated,
from RSA-100 to RSA-500, were labeled according to their
number of decimal digits; later, beginning with RSA-576,
binary digits are counted instead. An exception to the rule is
RSA-617, which was created prior to the change in the
numbering scheme (Brent, 2000). The RSA challenge
numbers were generated using a secure process that
guarantees that the factors of each number cannot be
obtained by any method other than factoring the published
value. No one, including RSA Laboratories, knows the
factors of any of the challenge numbers.

The generation took place on a Compaq laptop PC with
no network connection of any kind. The process proceeded
as follows (retrieved 5 February 2009):

• First, 30,000 random bytes were generated using a
ComScire QNG hardware random number generator,
attached to the laptop’s parallel port.

120 R.V. Yampolskiy

• The random bytes were used as the seed values for the
B_GenerateKeyPair function, in version 4.0 of the RSA
BSAFE library. The private portion of the generated
key pair was discarded. The public portion was
exported, in DER format to a disk file.

• The moduli were extracted from the files and converted
to decimal representation for posting on the web.

• The laptop’s hard drive was destroyed.

4 Experimental results

Described genetic algorithm was programmed in Java, as a
part of general framework, capable of being adapted to
evolve solutions to numerous optimisation problems in
addition to IF. We have begun our experiments while still
developing the framework and the algorithm did remarkably
well factoring small integers as the part of the debugging
process. Once the algorithm was completed we decided to
conduct an experiment with the smallest of the RSA
challenge numbers but the algorithm failed to converge on a
solution regardless of the population size, crossover type,
mutation rate or the number of generations evolved. In fact,
an improvement in fitness level of the best individual in
each generation showed very quick immediate progress only
to end up in a local maxima point and be unable to escape it
even in the long run.

Our analysis shows that the difficulty comes from
local maxima points pervasive in the IF domain. The rest of
this section attempts to address the nature of our finding.
A function f defined for real numbers is said to have a
local maximum at the point y, if there exists some ε > 0,
such that f(y) ≥ f(x) when |x − y| < ε. A function has a
global maximum point at y, if f(y) ≥ f(x) for all x.
Any global maximum point is also a local maximum
point; however the opposite is not true, a local maximum
point doesn’t have to be a global maximum point
(see Figure 1). In semiprime numbers such as
those presented by RSA challenge (numbers ending in
1, 3, 7 or 9) the local maxima points come from
numbers which are also a product of at least two
integers and which match the number to be factored in
terms of its constituting digits to a certain degree. For
example, we might be interested in factoring number
N = 15194323 = 3889 * 3907, but we might run into a
local maxima point represented by a different
number matching almost all of N’s digits except one:
15794323 = 3733 * 4231.

Such local maxima are frequent in the IF domain; in
fact, we were able to show that given any semiprime
number N with n decimal digits there are exactly 2 * 10n–1
unique pairs of numbers pi and qi up to n digits each, which
if multiplied, have a product matching all n digits of N
precisely. Same relationship also holds true for the prime
numbers which obviously don’t have a global maxima point
(see Figure 2). For example for N = 71 (n = 2), that number
is 2 * 102–1 = 2 * 101 = 20, or to list explicitly:

(01 * 71 = 71), (03 * 57 = 171), (07 * 53 = 371),
(09 * 19 = 171), (11 * 61 = 671), (13 * 67 = 871), (17 * 63
= 1071), (21 * 51 = 1071), (23 * 77 = 1771),
(27 * 73 = 1971), (29 * 99 = 2871), (31 * 41 = 1271), (33 *
87 = 2871), (37 * 83 = 3071), (39 * 89 = 3471),
(43 * 97 = 4171), (47 * 93 = 4371), (49 * 79 = 3871),
(69 * 59 = 4071), (81 * 91 = 7371). If plotted local maxima
p/q-pairs form a pattern, different for each specific IF
problem. Some examples are given in the figure below. It is
easy to see that even those highest of all the local maxima
points already comprise 20% of the total search space and
that percentage does not even include smaller local maxima
points.

The number of local maxima points associated with IF
will completely overwhelm any hill climbing algorithm
making it unlikely for any such algorithm to reliably
find solutions to non-trivial cases of IF. Realising that
our approach without fundamental modifications is unlikely
to successfully factor a hundred-plus digit RSA numbers
we have generated a sequence of progressively larger
semiprimes (beginning with N = 4) in order to
determine overall capability of our approach. The best result
achieved by our algorithm was a factorisation of a 12D
semiprime (103694293567 = 143509 * 722563). This result
took a little over 6 hours on a Intel 2 core 1.86 GHz
processor with 2 GB of RAM and was achieved with a
population consisting of 500 individuals, two point
crossover, mutation rate of 0.3% and genome represented
via decimal digits.

Additional examples of integers factored by our
algorithm along with complete information about the
specific run and evolving fitness values follow. Runs 1 and
2 are successfully factorisations of a 6D and 8D numbers.
3rd run represents an incomplete attempt to factor RSA100
challenge number which is two large for our algorithm to
handle.

Run 1: Factoring : 213443
Fitness value of 9.0, 829 * 357 295953
Fitness value of 10.0, 589 * 357 210273
Fitness value of 11.0, 569 * 757 430733
Fitness value of 12.0, 587 * 364 213668
Fitness value

=
=
=
=

of 13.0, 281 * 761 213841
Fitness value of 14.0, 407 * 549 223443
Solution : 463 * 461 213443

=
=

=

Run 2 : Factoring : 15194323
Fitness value of 10.0, 9257 * 5768 53394376
Fitness value of 12.0, 3680 * 4304 15838720
Fitness value of 13.0, 2821 * 3663 10333323
Fitness value of 14.0, 4081 * 3683 15

=
=
=
= 030323

Fitness value of 16.0, 5951 * 4973 29594323
Fitness value of 17.0, 8151 * 4373 35644323
Fitness value of 18.0, 3351 * 4773 15994323
Fitness value of 19.0, 4399 * 4477 19694323
Solution : 3889

=
=
=
=

 * 3907 15194323=

 Application of bio-inspired algorithm to the problem of integer factorisation 121

Run 3 : Factoring : RSA100
1522605027922533360535618378132637429718068114961380688657908494580122963258952897654000350692006139
Fitness value of 47.0,38536247742361858332211759120366062109212955254273

=

*
88791826261972849252172269232799807166287594359849
3421703814328137574624523768102107729194982296041569920469801474438581435631584972111888124456884777
Fitness value of 59.0, 9637862753656719886928

=

2246326871973487323674615512*
75614263957233789672690588220383886327654200801643
7287598982385913172756161871197118736827069184066856697551032897625007120244968629136504440202886216
Fitness value of

=

62.0,48199401972071282251803726368545070325588916526303 *
70708566515138205776465307238006337794546336781413
34081106203320858691977163371512357896853735442965371055698919956118243711280508886243083

=
05376006139

Fitness value of 63.0,21080432533027225787136926665545897372079112976303 *
67682974957663277570968497946626498478462136831413
1426786387229591976435444818920257308788699832810477894051925

=
443935895494758336204333662320175006139

Fitness value of 67.0,45112401168824468808230926665549874366675110976303 *
67668776956683277540868497946626468478423576831413
305270101267360097103266524899389

=
5564649074246547246319805268649945429766237000108104186561669006139

Fitness value of 68.0,25743321584521229357380737164870882613268481976303 *
58685714622657176248858420970617418486441956831413
15107

=
65223948503618079926074144533957816278632327321814241264433130665992180262097502965374032006139

Fitness value of 70.0, 25813763273880186803388247655718727008128401976303 *
58985134697707176208559700672111418385661756831413
1522628303764549399678057880563431125881934074701697134527917638006039415690511485317944440392006139
Fitness value of 76.0,25813743413280242019730531661406881034808401976303 *
58

=

985440647027466278871622921691418486141856831413
1522635029981637914707920352720567016197069957773863331657338852580811786956950790601166350692006139
Fitness value of 78.0,258132634195209868033882476

=

55718887008128401976303 *
58985440747027466278871622921691418486141856831413
1522606719919566764505893647063057356713068673798130276598105562605529409648749894817067510692006139
Fitness value of 82.0

=

, 25813253189380486182388462535798583024108401976303 *
58985445625025484832437795936396136486141856831413
152260624240721834157954425275860881286974241804370142658720375432734242341595135498504725069

=
2006139

Fitness value of 87.0,25813253119499621153488161635698083525108401976303 *
58985224641070688267644391936410288482841856831413
15226005339705038653981783791049893614187187545801638281101121974

=
83138227249675534557160350692006139

…

While obviously not a practical approach to factor integers
of the size required in modern cryptographic applications
our approach did outperformed algorithms based on genetic
programming (Finkel, 2003; Chan, 2002) and neural
networks (Jansen and Nakayama, 2005; Meletiou et al.,
2002; Laskari et al., 2006) as well as the best results
reported so far for the Shor’s algorithm (Shor, 1997). We
will continue with our experiments and hope that the next
version of our algorithm will be competitive with other
approaches as well. Next version of our algorithm will be
based on distributed voting between members of the genetic
pool with respect to specific digits making up the solution.

For example if 45% of all top ranked potential solution have
digit ‘8’ in location 2 eight will be selected as a part of the
final solution in the said location for this particular iteration
of the genetic algorithm.

The proposed genetic algorithm has outperformed
genetic programming approach because GP attempts to
come up with a universal solution for all instances of IF
instead of trying to find an optimal solution for a specific
problem which is easier as our algorithm demonstrates by
producing better results. Neural Network approach has its
own shortcomings namely its dependency on specific digits
as first layer inputs and structure designed to accommodate

122 R.V. Yampolskiy

numbers comprised of a specific amount of digits. Such
rigidness prevents NN from performing competitively with
our GA approach.

Figure 1 Global maximum and local maxima

Figure 2 Top – local maxima distributions for 7841 (prime
number) and bottom – 8883 (semiprime)

5 Conclusions and future work

We have developed a Java-based genetic algorithm
framework easily adaptable to any optimisation problem
and applied it to the problem of IF. We were able to
demonstrate that the IF problem is not an all-or-nothing
problem with only right/wrong answer and no partial
solutions. Unfortunately, IF also has an extremely high
number of local maxima points which we were able to show
represent well over 20% of the total solution space. This
property makes a straightforward hill climbing genetic
algorithm incapable of solving a non-trivial instance of an
IF problem.

In the future we propose to develop a mathematical
basis for analysis and evaluation of different types of local
maxima associated with specific IF problems and
incorporation of such data into the fitness functions in order
to avoid convergence of the genetic algorithm to a
suboptimal solution. More specifically we suggest
investigating the types of local maxima pattern distributions
seen for different sub-types of IF challenge numbers as well
as investigate statistically likely locations of global
maximum within such patterns. Additionally, patterns in
spatial distribution of local maxima points can be explored
as a tool for image sub-sampling or data compression.

One of the challenges associated with successful
application of genetic algorithms is very long execution
times required to evolve acceptable solutions to real world
problems. GAs can be very demanding in terms of
computational load and memory requirements with fitness
evaluation usually being the most expensive step. Numerous
parallel genetic algorithms have been proposed and in a
multitude of problem domains they demonstrate superior
performance in comparison to serial GAs (Nowostawski and
Poli, 1999). This happens both because of larger amount of
computational resources being available and also because of
higher degree of genetic diversity producible by multiple
independent populations evolving simultaneously and only
periodically sharing code of selected (not necessarily fittest)
individuals. In the future experiments we will port our
genetic algorithm framework to a parallel architecture along
side with local maxima conscious fitness function.

References

Lenstra, A.K. and Lenstra, H.W. Jr (Ed.) (1993) The Development
of the Number Field Sieve, Springer-Verlag, New York.

Adi Shamir, E.T. (2003) ‘Factoring large numbers with the
TWIRL device’, Crypto – The 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA,
pp.1–26.

Brent, R.P. (1999) ‘Factorization of the tenth Fermat number’,
Mathematics of Computation, Vol. 68, pp.429–451.

Brent, R.P. (2000) ‘Recent progress and prospects for integer
factorisation algorithms’, Computing and Combinatorics:
Sixth Annual International Computing and Combinatorics
Conference, Sydney, Australia, pp.3–22.

 Application of bio-inspired algorithm to the problem of integer factorisation 123

Bressoud, D.M. (1989) Factorizations and Primality Testing,
Springer-Verlag, New York.

Chan, D.M. (2002) ‘Automatic generation of prime factorization
algorithms using genetic programming’, in Genetic
Algorithms and Genetic Programming at Stanford. pp.52–57.
Stanford Bookstore. Stanford, California.

Chang, W-L., Guo, M. and Ho, M.S-H. (2005) ‘Fast parallel
molecular algorithms for DNA-based computation: factoring
integers’, IEEE Transactions on Nanobioscience, Vol. 4.

Dixon, J.D. (1981) ‘Asymptotically fast factorization of integers’,
Math. Comput., Vol. 36, pp.255–260.

Elkenbracht-Huizing, R-M. (1997) ‘Factoring integers with the
number field sieve’, PhD Thesis, Leiden University.

Finkel, J.R. (2003) ‘Using genetic programming to evolve an
algorithm for factoring numbers’, in Koza, J.R. (Ed.): Genetic
Algorithms and Genetic Programming at Stanford, Stanford
Bookstore, Stanford, California.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley Pub. Co.

Jansen, B. and Nakayama, K. (2005) ‘Neural networks following a
binary approach applied to the integer prime-factorization
problem’, IEEE International Joint Conference on Neural
Networks (IJCNN), 31 July, pp.2577–2582.

Knuth, D.E. (1981) The Art of Computer Programming,
Addison-Wesley.

Laskari, E.C., Meletiou, G.C., Tasoulis, D.K. and Vrahatis, M.N.
(2006) ‘Studying the performance of artificial neural
networks on problems related to cryptography’, Nonlinear
Analysis: Real World Applications, Vol. 7, pp.937–942.

Lehmer, D.H. and Powers, R.E. (1931) ‘On factoring large
numbers’, Bulletin of the American Mathematical Society,
Vol. 37, pp.770–776.

Lenstra, A.K. and Verheul, E.R. (2001) ‘Selecting cryptographic
key sizes’, Journal of Cryptology, Vol. 14, pp.255–293.

Lenstra, H.W. (1987) ‘Factoring integers with elliptic curves’,
Annals of Mathematics, Vol. 2, pp.649–673.

Marain, F. (2002) ‘Thirty years of integer factorization’,
in F. Shyzak (Ed.): Algorithms Seminar 2000–2001, INRIA,
pp.77–80.

Maurer, U. and Rueppel, R. (Eds.) (1992) Factoring with an
Oracle, Springer-Verlag.

McKee, J. (1996) ‘Turning Euler’s factoring method into a
factoring algorithm’, Bulletin of the London Mathematical
Society, Vol. 4, pp.351–355.

McKee, J. (1999) ‘Speeding Fermat’s factoring method’,
Mathematics of Computation, Vol. 68, pp.1729–1737.

Meletiou, G., Tasoulis, D.K. and Vrahatis, M.N. (2002) ‘A first
study of the neural network approach to the RSA
cryptosystem’, IASTED 2002 Conference on Artificial
Intelligence, Banff, Canada, pp.483–488.

Nowostawski, M. and Poli, R. (1999) ‘Parallel genetic
algorithm taxonomy’, Third International Conference on
Knowledge-Based Intelligent Information Engineering
Systems, Adelaide, SA, Australia, pp.88–92.

Pollard, J.M. (1974) ‘Theorems of factorization and primality
testing’, Proceedings of the Cambridge Philosophical Society,
Vol. 76, pp.521–528.

Pollard, J.M. (1975) ‘A Monte Carlo method for factorization’,
BIT Numerical Mathematics, Vol. 15, pp.331–334.

Pomerance, C. (1996) ‘A tale of two sieves’, Notices of the AMS,
Vol. 43, pp.1473–1485.

Rivest, R.L. and Shamir, A. (1986) ‘Efficient factoring
based on partial information’, Workshop on the Theory and
Application of Cryptographic Techniques on Advances in
Cryptology-EUROCRYPT ’85, Springer-Verlag, Linz,
Austria, pp.31–34.

RSA (2009) ‘RSA numbers’, Wikipedia, The Free Encyclopedia,
5 February, available at
http://en.wikipedia.org/wiki/RSA_numbers.

Shamir, A. (1999) ‘Factoring large numbers with the TWINKLE
device (extended abstract)’, Workshop on Cryptographic
Hardware and Embedded Systems (CHES ‘99), Worcester,
Massachusetts, USA, pp.2–12.

Shor, P.W. (1997) ‘Polynomial time algorithms for
prime factorization and discrete logarithms on a quantum
computer’, SIAM Journal Sci. Statist. Computing, Vol. 26,
pp.1484–1509.

Williams, H.C. (1982) ‘A p + 1 method of factoring’, Math.
Comp., Vol. 39, pp.225–234.

Yampolskiy, R., Anderson, P., Arney, J., Misic, V. and Clarke, T.
(2004) ‘Printer model integrating genetic algorithm for
improvement of halftone patterns’, Western New York Image
Processing Workshop (WNYIPW), IEEE Signal Processing
Society, Rochester, NY.

