
Anomaly Detection Based Intrusion Detection

Dima Novikov
Department of Computer

Science
Rochester Institute of

Technology

Roman V. Yampolskiy
Department of Computer
Science and Engineering

and IGERT in GIS
University at Buffalo

Leon Reznik
Department of Computer

Science
Rochester Institute of

Technology

Abstract

This work is devoted to the problem of Neural
Networks as means of Intrusion Detection. We show
that properly trained Neural Networks are capable of
fast recognition and classification of different attacks.
The advantage of the taken approach allows us to
demonstrate the superiority of the Neural Networks
over the systems that were created by the winner of
the KDD Cups competition and later researchers due
to their capability to recognize an attack, to
differentiate one attack from another, i.e. classify
attacks, and, the most important, to detect new attacks
that were not included into the training set. The
results obtained through simulations indicate that it is
possible to recognize attacks that the Intrusion
Detection System never faced before on an acceptably
high level.

1. Introduction

 Most Intrusion Detection Systems (IDS) perform
monitoring of a system by looking for specific
"signatures" of behavior. However, using current
methods, it is almost impossible to develop
comprehensive-enough databases to warn of all
attacks. This is for three main reasons. First, these
signatures must be hand-coded. Attack signatures that
are already known are coded into a database, against
which the IDS checks current behavior. Such a
system may be very rigid. Second, because there is a
theoretically infinite number of methods and
variations of attacks, an infinite size database would
be required to detect all possible attacks. This, of
course, is not feasible. Also, any attack that is not
included in the database has the potential to cause
great harm. Finally one other problem is that current
methods are likely to raise many false alarms. So not

only do novel attacks succeed, but legitimate use can
actually be discouraged.

 We investigate the benchmarks provided by the
Defense Advanced Research Projects Agency
(DARPA) and the International Knowledge Discovery
and Data Mining Group (KDD) [1]. These
benchmarks and the experience of prior researchers
are utilized to create an IDS that is capable of learning
attack behavior and is able to identify new attacks
without system update. In other words, we create a
flexible system that does not need hand-coded
database of signatures, and that can define new attacks
based on pattern, not fixed rules provided by a third
party. Neural Networks are chosen as the means of
achieving this goal. The use of Neural Networks
allows us to identify an attack from the training set,
also it allows us to identify new attacks, not included
into the training set, and perform attack classification.

2. Intrusion Detection Overview

 In the context of information systems, intrusion
refers to any unauthorized access, not permitted
attempt to access or damage, or malicious use of
information resources. Intrusions can be categorized
into two classes: anomaly intrusions and misuse
intrusions [6]. Thus, intrusion detection has
traditionally focused on one of two approaches:
anomaly detection or misuse detection.

 Anomaly detection seeks to identify activities that
vary from established patterns for users, or groups of
users. It typically involves the creation of knowledge
bases compiled from profiles of previously monitored
activities. Anomaly detection is usually achieved
through one of the following:

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE

1) Threshold detection, detecting abnormal
activity on the server or network, for example
abnormal consumption of the CPU for one
server, or abnormal saturation of the network.

2) Statistical measures, learned from historical
values.

3) Rule-based measures, with expert systems.

4) Non-linear algorithms such as Neural
Networks or Genetic Algorithms [7].

 The second approach, misuse detection, compares
user’s activities with the known behaviors of attackers
attempting to penetrate a system. Anomaly detection
often uses threshold monitoring to identify incidents,
while misuse detection is most often accomplished
using a rule-based approach. The misuse detection is
usually achieved through one of the following:

1) Expert systems, containing a set of rules that
describe attacks.

2) Signature verification, where attack scenarios
are translated into sequences of audit events.

3) Petri nets, where known attacks are
represented with graphical Petri nets.

4) Sate-transition diagrams, representing attacks
with a set of goals and transitions [7].

 Expert systems are the most common form of rule-
based intrusion detection approaches. Unfortunately,
expert systems have little or no flexibility; even minor
variations in an attack sequence can affect the activity-
rule comparison to a great enough degree to prevent
detection. Some approaches have increased the level
of abstraction of the rule-based approach in an attempt
to compensate for this weakness, with a side effect of
reducing the granularity of the intrusion detection
process [8].

 The most common method to identify intrusions is
the method, which makes use of the log data generated
by special software, like firewalls, or the operating
system. It is possible that a manual examination of
those logs would make it sufficient to detect
intrusions. Analyzing the data even after an attack has
taken place to decide the degree of damage sustained
is trivial. This examination also plays a significant
role in tracking down the intruders and recording the
attack patterns for future detections. A well-designed
IDS that can be used to analyze audit data for such

insights makes a valuable tool for information
systems.

 The idea behind anomaly detection is to establish
each user’s normal activity profile, and to flag
deviations from the established profile as possible
intrusion attempts. A main issue concerning misuse
detection is the signature development that includes
all possible attacks to avoid false negatives, and the
signature development that does not match non-
intrusive activities to avoid false positives. Though,
false negatives are frequently considered more
serious. The selection of threshold levels is important,
so that neither of the above problems is unreasonably
magnified [6].

3. Experiments

3.1. Data

 To conduct the experiments, it was decided to use
the benchmarks of the International Knowledge
Discovery and Data Mining group (KDD). These data
are based on the benchmark of the Defense Advanced
Research Projects Agency (DARPA) that was
collected by the Lincoln Laboratory of Massachusetts
Institute of Technology in 1998, and was the first
initiative to provide designers of Intrusion Detection
Systems with a benchmark, on which to evaluate
different methodologies [1].

 In order to collect these data, a simulation had been
made of a factitious military network consisting of
three “target” machines running various operating
systems and services. Additional three machines were
then used to spoof different IP addresses, thus
generating traffic between different IP addresses.
Finally, a sniffer was used to record all network traffic
using the TCP dump format. The total simulated
period was seven weeks.

 Normal connections were created to profile that
expected in a military network and attacks fall into
one of five categories: User to Root (U2R), Remote to
Local (R2L), Denial of Service (DOS), Data, and
Probe. Packets information in the TCP dump files
were summarized into connections. Specifically, a
connection was a sequence of TCP packets starting
and ending at some well defined times, between which
data flows from a source IP address to a target IP
address under some well defined protocol. In 1999 the
original TCP dump files were preprocessed for
utilization in the IDS benchmark of the International

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE

Knowledge Discovery and Data Mining Tools
Competitions [2].

The data consists of a number of basic features:
Duration of the connection, Protocol type, such as
TCP, UDP or ICMP, Service type, such as FTP,
HTTP, Telnet, Status flag, Total bytes sent to
destination host, Total bytes sent to source host,
Whether source and destination addresses are the
same or not, Number of wrong fragments, Number of
urgent packets. Each record consists of 41 attributes
and one target [4, 5]. The target value indicates the
attack name. In addition to the above nine basic
features, each record is also described in terms of an
additional 32 derived features, falling into three
categories:

1. Content features: Domain knowledge is used
to assess the payload of the original TCP
packets. This includes features such as the
number of failed login attempts.

2. Time-based traffic features: these features are
designed to capture properties that mature
over a 2 second temporal window. One
example of such a feature would be the
number of connections to the same host over
the 2 second interval.

3. Host-based traffic features: utilize a historical
window estimated over the number of
connections – in this case 100 – instead of
time. Host based features are therefore
designed to assess attacks, which span
intervals longer than 2 seconds.

In order to perform formatting and optimization
of the data, a tool was written that is capable of
completing such operations as computing data
statistics, data conversion, data optimization, neural
network input creation, and other data preprocessing
related assignments. Based on the results produced by
the Preparation Tool, we made the following
classifications: Each record consists of 41 fields and
one target. The target value indicates the attack name.
The data has 4,898,431 records in the dataset.
3,925,650 (80.14%) records represent attacks that fall
into one of the five mentioned above categories. Total
22 attacks were identified. 972,781 (19.85%) records
of normal behavior were found.

Attributes in the KDD datasets contained multiple
types: integers, floats, strings, booleans, with
significantly varying resolution and ranges. Most

pattern classification methods are not able to process
data in such a format. Therefore, preprocessing took
place to transform the data into the most optimal
format acceptable by the neural networks.

First of all, the dataset was split into multiple files
and duplicate records were removed. Each file
contained records corresponding to a certain attack or
normal behavior. Thus, a library of attacks was
created. It was done to achieve an efficient way to
format, optimize, and compose custom training and
testing datasets. Second, symbolic features like attack
name (23 different symbols), protocol type (three
different symbols), service (70 different symbols), and
flag (11 different symbols) were mapped to integer
values ranging from 0 to N-1 where N is the number
of symbols. Third, a certain scaling had taken place:
each of the mapped features was linearly scaled to the
range [0.0, 1.0]. Features having integer value ranges
like duration were also scaled linearly to the range of
[0, 1]. All other features were either Boolean, like
logged_in, having values (0 or 1), or continuous, like
diff_srv_rate, in the range of [0, 1]. No scaling was
necessary for these attributes.

Attacks with the most number of records were
chosen to be in the training set. The following attacks
were used to train and to test the neural networks:
Smuf, Satan, Neptune, Ipsweep, Back. The following
attacks were chosen for the unknown (not trained) set
of attacks: Buffer_overflow, Guess_password, Nmap,
Teardrop, Warezclient.

3.2. Neural Networks Based Intrusion
Detection System Experiments

It was decided to run the experiments in three
stages. In stage one, it was important to repeat the
experiments of other researchers and have the Neural
Networks to identify an attack. In stage two the
experiment was aimed at a more complicated goal. It
was decided to classify the attacks, thus, the Neural
Networks had to determine not only the presence of an
attack, but the attack itself. Stage three had to repeat
the experiments of stage two, but in this stage a set of
unknown attacks are added to the testing set. Stage
three contains experiments of a higher complexity and
interest.

Each Radial Bases Function (RBF) Neural
Network had 41 inputs, corresponding to each
attribute in the dataset, two outputs for attack
detection (the first output for the presence of an attack

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE

– “YES”, the second output for the normal behavior –
“NO”), or six outputs for attack classification (five
outputs for the attacks, and the sixth output for the
normal behavior), three layers (input, hidden, and
output). The training set consisted of 4000 records.
The attack and the normal behavior records were
evenly distributed in the training set.

The parameters of the Multiple Layer Perceptron
(MLP) NN were: 41 inputs, corresponding to each
attribute in the dataset. Two outputs for attack
detection (the first output for the presence of an attack
– “YES”, the second output for the normal behavior –
“NO”), or six outputs for attack classification (five
outputs for the attacks, and the sixth output for the
normal behavior). Three layers (input, hidden, and
output). The hidden layer has 20 nodes, alpha = 0.7,
beta = 0.8, “tansig” function is used in the input layer
node, “purelin” in the hidden and output layer nodes,
50 epochs. The training set consisted of 4000 records.
The attack and the normal behavior records were
evenly distributed in the training set.

3.3. Results

The first stage of the experiments consisted of 2
phases. First, only one attack was used in the training
set. The distribution of an attack and normal records
was 50% - 50%. Table 1 represents the results of these
experiments. As it is shown, the accuracy of positive
recognition is very high for both Neural Networks. All
of the attacks have more than 90% of recognition.
Most of them are very close to 100%, what is a very
good and expected result.

Table 1. One Attack Dataset Results

Attack
Name

RBF
Accuracy

RBF
False

Alarms

MLP
Accuracy

MLP
False

Alarms
Smurf 100% 0 99.5% 0

Neptune 100% 0 100% 0
Satan 91% 7% 97.2% 2%

IP
Sweep

99.5% 0 99.9% 0

Back 100% 0 100% 0

For the second phase of the first stage of the
experiments, five different attacks were used in the
training set. Normal behavior records was considered
as an attack, thus total of six attacks were used in this
stage. In order to proceed to the next level of the
experiments, attack classification, it was important to
prove that the attacks are distinguishable. Therefore,
six different experiments were held to prove this idea.

50% of the training set consisted of the concentrated
attack, i.e. the attack that had to be differentiated from
the others.

Other 50% were evenly distributed between other
attacks, i.e. 10% per attack. For example, normal
behavior records needed to be defined. 50% of the
training set for this assignment consisted of the
records of normal behavior and other 50% contained
records of Smurf, Neptune, Satan, IP Sweep, and Back
attacks. All records were in random order.

Table 2 demonstrates the results of this
experiment. As shown in the table, the accuracy for
differentiating the attacks is quite high for both Neural
Networks. The lowest accuracy is 91% for Satan and
the highest is 100% for Smurf, Neptune, and Back.
These results let us make a conclusion that attacks can
be differentiated, thus classified.

Table 2. Five Attack Dataset Results.

Attack
Name

RBF
Accuracy

RBF
False

Alarms

MLP
Accuracy

MLP
False

Alarms
Smurf 100% 0 99.5% 0

Neptune 100% 0 100% 0
Satan 91% 7% 97.2% 2%

IP
Sweep

99.5% 0 99.9% 0

Back 100% 0 100% 0
Normal 98.0% 1% 96.8% 2%

For the second stage of the experiments Neural
Networks with six outputs were used. At this level
there was an attempt to create an Intrusion Detection
System that is capable of classifying the attacks. A
dataset of five attacks and normal behavior records
were used. The attacks were evenly distributed in the
dataset. Table 3 demonstrates the result of this
experiment. As we can see the accuracy of classifying
attacks is 93.2% using RBF Neural Network and
92.2% using MLP Neural Network.

The results were very close and the difference is
statistically insignificant. In most cases the Networks
managed to classify an attack correctly. The false
alarm rate (false positive) is very low in both cases,
missed attacks rate (false negative) is not high either,
and the misidentified attacks rate (misclassification of
the attacks) is 5%-6%. Overall, it is possible to
conclude that both Neural Networks managed to
accomplish the second stage of the experiments and
were capable of classifying the attacks. Therefore, the
environment for the third stage of the experiments was
set.

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE

Table 3. Attacks Classification

 For the final stage of the experiments we used the
trained NN from the second stage. The Networks were
trained to classify the following attacks: Smurf,
Neptune, Satan, IP Sweep, Back, and Normal
behavior records. At this point we proceeded with the
most interesting and exciting phase of the experiments
– untrained (unknown) attack identification.

 As it was mentioned earlier, five attacks were
chosen to be used for this purpose: Buffer Overflow,
Guess Password, NMap, Teardrop, and Warezclient.
Datasets of these attacks were sent into the trained
Neural Networks. Table 4 demonstrates the results:
RBF neural network managed to identify the unknown
attacks as one of the trained attacks in most cases. As
for the MLP Neural Network, it succeeded only with
NMap and Guess Password attacks. In other cases it
identified the attacks as normal behavior. Thus, RBF
displayed more capabilities in identifying unknown
attacks while MLP failed in some cases.

Table 4. Unknown Attacks Identification.

Attack Name MLP RBF
Buffer Overflow 53.3% 96.6%

Guess Password 96.2% 100%

NMap 99.5% 100%

Teardrop 1% 84.9%

Warezclient 8% 94.3%

 As the previous research indicates, there were
many attempts to detect and classify attacks. The
winner of the last KDD intrusion detection
competition, Dr. Bernhard Pfahringer of the Austrian
Research Institute for Artificial Intelligence, used C5
decision trees, the second-place performance was
achieved by Itzhak Levin from LLSoft using Kernel
Miner tool, and the third-place contestants, V.
Miheev, A. Vopilov, and I. Shabalin of the company
MP13, used a decision tree based expert system [3].
Also, we note the results of the most recent research
made by Maheshkumar Sabhnani and Gursel Serpen
of the Ohio University who used a multi classify
model to achieve even better results than the winner of
the KDD Cups contest [9].

Table 5 compares the mentioned above results. As
we can see, in some cases accuracy of the
classification is as low as 8.4%, which is totally not
acceptable. The main problem with the approach they
had chosen was that they used all attacks in the
dataset, though many of those attacks did not have
enough records for training, as we outlined after the
data formatting and optimization took place. If an
attack does not have enough presence (IMAP attack
had only 12 records), it should not be used for
training.

 Also, they grouped the attacks, what potentially
can lead to a misdetection since not all of the attacks
in the same group have identical signatures and
patterns. Thus, a different approach was chosen to
detect and classify attack. The main advantage of this
approach was data formatting and the training dataset
grouping, which allowed us to increase the accuracy
rate up to 100% in some cases, and to achieve a high
percentage of identification of the attacks
that were not included into the training set.

Table 5. Result Comparison.

Probe DoS U2R R2L

Accuracy 83.3% 97.1% 13.2% 8.4% KDD
Cup
Winner False

Alarms
0.6% 0.3% 0.1% 0.1%

Accuracy 83.3% 97.1% 13.2% 8.4% KDD
Cup
Runner
Up

False
Alarms

0.6% 0.3% 0.1% 0.1%

Accuracy 88.7% 97.3% 29.8% 9.6% Multi-
Classifier

False
Alarms

0.4% 0.4% 0.4% 0.1%

4. Conclusions

 Modern commercially used Intrusion Detection
Systems employ the techniques of expert systems that
require constant updates from the vendors. These
updates make the IDS static, not flexible, and not
capable of detecting new attacks without new batches.
To improve the security, a lot of researchers put
efforts to utilize Artificial Intelligence techniques in
the area of Intrusion Detection, in order to create
systems capable of detecting unknown attacks, or/and
learning new patterns by themselves.

 Benchmarks were created to standardize and
compare the work of different investigators of this

Accuracy False
Alarms

Missed
Attacks

Mis-
identified
Attacks

RBF 93.2% 0.8% 0.6% 5.4%
MLP 92.2% 0 2.1% 5.7%

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE

problem. Competitions were held to attract the
attention of new researchers. In the most cases Neural
Networks were used to detect attacks, and decision-
making trees were used to classify them. After
extensive study, we decided to come up with a unique
solution, and approached the problem with a new
dataset formatting and optimization technique.

 A library of attacks was created. This library was
based on the benchmark provided by the MIT Lincoln
Lab that was optimized by the KDD Cups. After the
data was carefully formatted and optimized, it was
decided to use and compare two different Neural
Networks in attack detection and classification. Neural
Networks were chosen due to their abilities to learn
and classify. Trained Neural Networks can make
decisions quickly, making it possible to use them in
real-time detection.

 Both types of Neural Networks managed to
perform well on the known set of attacks, i.e. attacks
that they were trained to identify and classify. After
new attacks were added to the testing set, i.e. attacks
that were not included into the training set, Radial
Basis Function Neural Network performed
significantly better than Multiple Layer Perceptron
with the detection rate between 80% and 100%, and
the false alarm rate not greater than 2%.

 When we compared these results to the results of
previous work, it was notable that the chosen
technique had its advantages. First of all, we managed
to correctly detect the attacks. Second, classification
of the trained attacks was successful with the rate of
90-100%. Third, and the most important, we were able
to detect new unknown attacks, which were not
included into the training set. The accuracy of
detecting new unknown attacks was between 80% and
100%.

 After performing our experiments we concluded
that with appropriate data formatting, optimization,
and dataset composition, Neural Networks display a
very good performance and potential in detecting and
classifying trained attack, as well as new unknown
attacks that were not included into the training set.
Thus, the main goal of this research was
accomplished.

In the future we would like to investigate possibility
of utilizing other types of neural networks to the task
of intrusion detection. Additionally we would like to
attempt to classify not just detect previously unknown

problems, perhaps with a self-organizing neural
network.

5. Acknowledgements

 We would like to thank Dr. Roger Gaborski and
Dr. Hans-Peter Bischof from Rochester Institute of
Technology for valuables comments on our research
methodology. This paper is partially based upon work
supported by National Science Foundation Grant No.
DGE 0333417 ”Integrative Geographic Information
Science Traineeship Program”, awarded to the
University at Buffalo.

6. References

[1] DARPA, Intrusion Detection Evaluation. MIT Lincoln
Laboratory, 1998 (http://www.ll.mit.edu/ist/ideval).

[2] Hettich, S. and S.D. Bay, The UCI KDD Archive.
University of California, Department of Information and
Computer Science, 1999.

[3] KDD, http://wwwcse.ucsd.edu/users/elkan
/clresults.html. KDD Cups 99 - Intrusion Detection Contest,
1999.

[4] Lee, W., S. Stolfo, and K. Mok, Mining in a Data-Flow
Environment: Eperience in Network Intrusion Detection. In
Proceedings of the 5th ACM SIGKDD, 1999.

[5] Lee, W., S.J. Stolfo, and K.W. Mok, A Data Mining
Framework for Building Intrusion Detection Models. IEEE
Symposium on Security and Privacy, 1999.

[6] Mukkamala, S., G. Janoski, and A. Sung, Intrusion
Detection Using Neural Networks and Support Vector
Machine. IEEE, 2002.

[7] Planquart, J., Application of Neural Networks to
Intrusion Detection. SANS Institute, 2001.

[8] Rhodes, B., J. Mahaffey, and J. Cannady, Multiple Self-
Organizing Maps for Intrusion Detection. GIT Information
Technology and Telecommunications Laboratorys, 1999.

[9] Sabhnani, M. and G. Serpen, Application of Machine
Learning Algorithms to KDD Intrusion Detection Dataset
within Misuse Detection Context. EECS, University of
Toledo, 2003.

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

