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Abstract 

This work is devoted to the problem of Neural 
Networks as means of Intrusion Detection. We show 
that properly trained Neural Networks are capable of 
fast recognition and classification of different attacks. 
The advantage of the taken approach allows us to 
demonstrate the superiority of the Neural Networks 
over the systems that were created by the winner of 
the KDD Cups competition and later researchers due 
to their capability to recognize an attack, to 
differentiate one attack from another, i.e. classify 
attacks, and, the most important, to detect new attacks 
that were not included into the training set. The 
results obtained through simulations indicate that it is 
possible to recognize attacks that the Intrusion 
Detection System never faced before on an acceptably 
high level. 

1. Introduction 

     Most Intrusion Detection Systems (IDS) perform 
monitoring of a system by looking for specific 
"signatures" of behavior.  However, using current 
methods, it is almost impossible to develop 
comprehensive-enough databases to warn of all 
attacks.  This is for three main reasons.  First, these 
signatures must be hand-coded.  Attack signatures that 
are already known are coded into a database, against 
which the IDS checks current behavior.  Such a 
system may be very rigid.  Second, because there is a 
theoretically infinite number of methods and 
variations of attacks, an infinite size database would 
be required to detect all possible attacks.  This, of 
course, is not feasible.  Also, any attack that is not 
included in the database has the potential to cause 
great harm.  Finally one other problem is that current 
methods are likely to raise many false alarms.  So not 

only do novel attacks succeed, but legitimate use can 
actually be discouraged. 

     We investigate the benchmarks provided by the 
Defense Advanced Research Projects Agency 
(DARPA) and the International Knowledge Discovery 
and Data Mining Group (KDD) [1]. These 
benchmarks and the experience of prior researchers 
are utilized to create an IDS that is capable of learning 
attack behavior and is able to identify new attacks 
without system update. In other words, we create a 
flexible system that does not need hand-coded 
database of signatures, and that can define new attacks 
based on pattern, not fixed rules provided by a third 
party. Neural Networks are chosen as the means of 
achieving this goal. The use of Neural Networks 
allows us to identify an attack from the training set, 
also it allows us to identify new attacks, not included 
into the training set, and perform attack classification.  

2. Intrusion Detection Overview 

     In the context of information systems, intrusion 
refers to any unauthorized access, not permitted 
attempt to access or damage, or malicious use of 
information resources. Intrusions can be categorized 
into two classes: anomaly intrusions and misuse 
intrusions [6]. Thus, intrusion detection has 
traditionally focused on one of two approaches: 
anomaly detection or misuse detection. 

     Anomaly detection seeks to identify activities that 
vary from established patterns for users, or groups of 
users. It typically involves the creation of knowledge 
bases compiled from profiles of previously monitored 
activities. Anomaly detection is usually achieved 
through one of the following:  

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)  
0-7695-2497-4/06 $20.00 © 2006 IEEE 



1) Threshold detection, detecting abnormal 
activity on the server or network, for example 
abnormal consumption of the CPU for one 
server, or abnormal saturation of the network. 

2) Statistical measures, learned from historical 
values. 

3) Rule-based measures, with expert systems. 

4) Non-linear algorithms such as Neural 
Networks or Genetic Algorithms [7]. 

     The second approach, misuse detection, compares 
user’s activities with the known behaviors of attackers 
attempting to penetrate a system. Anomaly detection 
often uses threshold monitoring to identify incidents, 
while misuse detection is most often accomplished 
using a rule-based approach. The misuse detection is 
usually achieved through one of the following: 

1) Expert systems, containing a set of rules that 
describe attacks. 

2) Signature verification, where attack scenarios 
are translated into sequences of audit events. 

3) Petri nets, where known attacks are 
represented with graphical Petri nets. 

4) Sate-transition diagrams, representing attacks 
with a set of goals and transitions [7]. 

     Expert systems are the most common form of rule-
based intrusion detection approaches. Unfortunately, 
expert systems have little or no flexibility; even minor 
variations in an attack sequence can affect the activity-
rule comparison to a great enough degree to prevent 
detection. Some approaches have increased the level 
of abstraction of the rule-based approach in an attempt 
to compensate for this weakness, with a side effect of 
reducing the granularity of the intrusion detection 
process [8].  

     The most common method to identify intrusions is 
the method, which makes use of the log data generated 
by special software, like firewalls, or the operating 
system. It is possible that a manual examination of 
those logs would make it sufficient to detect 
intrusions. Analyzing the data even after an attack has 
taken place to decide the degree of damage sustained 
is trivial. This examination also plays a significant 
role in tracking down the intruders and recording the 
attack patterns for future detections. A well-designed 
IDS that can be used to analyze audit data for such 

insights makes a valuable tool for information 
systems.  

     The idea behind anomaly detection is to establish 
each user’s normal activity profile, and to flag 
deviations from the established profile as possible 
intrusion attempts. A main issue concerning misuse 
detection is the signature development that includes 
all possible attacks to avoid false negatives, and the 
signature development that does not match non-
intrusive activities to avoid false positives. Though, 
false negatives are frequently considered more 
serious. The selection of threshold levels is important, 
so that neither of the above problems is unreasonably 
magnified [6].

3. Experiments 

3.1. Data 

     To conduct the experiments, it was decided to use 
the benchmarks of the International Knowledge 
Discovery and Data Mining group (KDD). These data 
are based on the benchmark of the Defense Advanced 
Research Projects Agency (DARPA) that was 
collected by the Lincoln Laboratory of Massachusetts 
Institute of Technology in 1998, and was the first 
initiative to provide designers of Intrusion Detection 
Systems with a benchmark, on which to evaluate 
different methodologies [1].  

     In order to collect these data, a simulation had been 
made of a factitious military network consisting of 
three “target” machines running various operating 
systems and services. Additional three machines were 
then used to spoof different IP addresses, thus 
generating traffic between different IP addresses. 
Finally, a sniffer was used to record all network traffic 
using the TCP dump format. The total simulated 
period was seven weeks.  

     Normal connections were created to profile that 
expected in a military network and attacks fall into 
one of five categories: User to Root (U2R), Remote to 
Local (R2L), Denial of Service (DOS), Data, and 
Probe. Packets information in the TCP dump files 
were summarized into connections. Specifically, a 
connection was a sequence of TCP packets starting 
and ending at some well defined times, between which 
data flows from a source IP address to a target IP 
address under some well defined protocol. In 1999 the 
original TCP dump files were preprocessed for 
utilization in the IDS benchmark of the International 
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Knowledge Discovery and Data Mining Tools
Competitions [2].

The data consists of a number of basic features:
Duration of the connection, Protocol type, such as
TCP, UDP or ICMP, Service type, such as FTP,
HTTP, Telnet, Status flag, Total bytes sent to
destination host, Total bytes sent to source host,
Whether source and destination addresses are the
same or not, Number of wrong fragments, Number of
urgent packets. Each record consists of 41 attributes
and one target [4, 5]. The target value indicates the
attack name. In addition to the above nine basic
features, each record is also described in terms of an
additional 32 derived features, falling into three
categories:

1. Content features: Domain knowledge is used
to assess the payload of the original TCP
packets. This includes features such as the
number of failed login attempts.

2. Time-based traffic features: these features are
designed to capture properties that mature
over a 2 second temporal window. One
example of such a feature would be the
number of connections to the same host over
the 2 second interval.

3. Host-based traffic features: utilize a historical
window estimated over the number of
connections – in this case 100 – instead of
time. Host based features are therefore
designed to assess attacks, which span
intervals longer than 2 seconds.

In order to perform formatting and optimization
of the data, a tool was written that is capable of
completing such operations as computing data
statistics, data conversion, data optimization, neural
network input creation, and other data preprocessing
related assignments. Based on the results produced by
the Preparation Tool, we made the following
classifications: Each record consists of 41 fields and
one target. The target value indicates the attack name.
The data has 4,898,431 records in the dataset.
3,925,650 (80.14%) records represent attacks that fall
into one of the five mentioned above categories. Total
22 attacks were identified. 972,781 (19.85%) records
of normal behavior were found.

Attributes in the KDD datasets contained multiple
types: integers, floats, strings, booleans, with
significantly varying resolution and ranges. Most

pattern classification methods are not able to process
data in such a format. Therefore, preprocessing took
place to transform the data into the most optimal
format acceptable by the neural networks.

First of all, the dataset was split into multiple files
and duplicate records were removed. Each file
contained records corresponding to a certain attack or
normal behavior. Thus, a library of attacks was
created. It was done to achieve an efficient way to
format, optimize, and compose custom training and
testing datasets. Second, symbolic features like attack
name (23 different symbols), protocol type (three
different symbols), service (70 different symbols), and
flag (11 different symbols) were mapped to integer
values ranging from 0 to N-1 where N is the number
of symbols. Third, a certain scaling had taken place:
each of the mapped features was linearly scaled to the
range [0.0, 1.0]. Features having integer value ranges
like duration were also scaled linearly to the range of
[0, 1]. All other features were either Boolean, like
logged_in, having values (0 or 1), or continuous, like
diff_srv_rate, in the range of [0, 1]. No scaling was
necessary for these attributes.

Attacks with the most number of records were
chosen to be in the training set. The following attacks
were used to train and to test the neural networks:
Smuf, Satan, Neptune, Ipsweep, Back. The following
attacks were chosen for the unknown (not trained) set
of attacks: Buffer_overflow, Guess_password, Nmap,
Teardrop, Warezclient.

3.2. Neural Networks Based Intrusion
Detection System Experiments

It was decided to run the experiments in three
stages. In stage one, it was important to repeat the
experiments of other researchers and have the Neural
Networks to identify an attack. In stage two the
experiment was aimed at a more complicated goal. It
was decided to classify the attacks, thus, the Neural
Networks had to determine not only the presence of an
attack, but the attack itself. Stage three had to repeat
the experiments of stage two, but in this stage a set of
unknown attacks are added to the testing set. Stage
three contains experiments of a higher complexity and
interest.

Each Radial Bases Function (RBF) Neural
Network had 41 inputs, corresponding to each
attribute in the dataset, two outputs for attack
detection (the first output for the presence of an attack
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– “YES”, the second output for the normal behavior –
“NO”), or six outputs for attack classification (five
outputs for the attacks, and the sixth output for the
normal behavior), three layers (input, hidden, and
output). The training set consisted of 4000 records.
The attack and the normal behavior records were
evenly distributed in the training set.

The parameters of the Multiple Layer Perceptron
(MLP) NN were: 41 inputs, corresponding to each
attribute in the dataset. Two outputs for attack
detection (the first output for the presence of an attack
– “YES”, the second output for the normal behavior –
“NO”), or six outputs for attack classification (five
outputs for the attacks, and the sixth output for the
normal behavior). Three layers (input, hidden, and
output). The hidden layer has 20 nodes, alpha = 0.7,
beta = 0.8, “tansig” function is used in the input layer
node, “purelin” in the hidden and output layer nodes,
50 epochs. The training set consisted of 4000 records.
The attack and the normal behavior records were
evenly distributed in the training set.

3.3. Results

The first stage of the experiments consisted of 2
phases. First, only one attack was used in the training
set. The distribution of an attack and normal records
was 50% - 50%. Table 1 represents the results of these
experiments. As it is shown, the accuracy of positive
recognition is very high for both Neural Networks. All
of the attacks have more than 90% of recognition.
Most of them are very close to 100%, what is a very
good and expected result.

Table 1. One Attack Dataset Results

Attack
Name

RBF
Accuracy

RBF
False

Alarms

MLP
Accuracy

MLP
False

Alarms
Smurf 100% 0 99.5% 0

Neptune 100% 0 100% 0
Satan 91% 7% 97.2% 2%

IP
Sweep

99.5% 0 99.9% 0

Back 100% 0 100% 0

For the second phase of the first stage of the
experiments, five different attacks were used in the
training set. Normal behavior records was considered
as an attack, thus total of six attacks were used in this
stage. In order to proceed to the next level of the
experiments, attack classification, it was important to
prove that the attacks are distinguishable. Therefore,
six different experiments were held to prove this idea.

50% of the training set consisted of the concentrated
attack, i.e. the attack that had to be differentiated from
the others.

Other 50% were evenly distributed between other
attacks, i.e. 10% per attack. For example, normal
behavior records needed to be defined. 50% of the
training set for this assignment consisted of the
records of normal behavior and other 50% contained
records of Smurf, Neptune, Satan, IP Sweep, and Back
attacks. All records were in random order.

Table 2 demonstrates the results of this
experiment. As shown in the table, the accuracy for
differentiating the attacks is quite high for both Neural
Networks. The lowest accuracy is 91% for Satan and
the highest is 100% for Smurf, Neptune, and Back.
These results let us make a conclusion that attacks can
be differentiated, thus classified.

Table 2. Five Attack Dataset Results.

Attack
Name

RBF
Accuracy

RBF
False

Alarms

MLP
Accuracy

MLP
False

Alarms
Smurf 100% 0 99.5% 0

Neptune 100% 0 100% 0
Satan 91% 7% 97.2% 2%

IP
Sweep

99.5% 0 99.9% 0

Back 100% 0 100% 0
Normal 98.0% 1% 96.8% 2%

For the second stage of the experiments Neural
Networks with six outputs were used. At this level
there was an attempt to create an Intrusion Detection
System that is capable of classifying the attacks. A
dataset of five attacks and normal behavior records
were used. The attacks were evenly distributed in the
dataset. Table 3 demonstrates the result of this
experiment. As we can see the accuracy of classifying
attacks is 93.2% using RBF Neural Network and
92.2% using MLP Neural Network.

The results were very close and the difference is
statistically insignificant. In most cases the Networks
managed to classify an attack correctly. The false
alarm rate (false positive) is very low in both cases,
missed attacks rate (false negative) is not high either,
and the misidentified attacks rate (misclassification of
the attacks) is 5%-6%. Overall, it is possible to
conclude that both Neural Networks managed to
accomplish the second stage of the experiments and
were capable of classifying the attacks. Therefore, the
environment for the third stage of the experiments was
set.
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Table 3. Attacks Classification 

     For the final stage of the experiments we used the 
trained NN from the second stage. The Networks were 
trained to classify the following attacks: Smurf, 
Neptune, Satan, IP Sweep, Back, and Normal 
behavior records. At this point we proceeded with the 
most interesting and exciting phase of the experiments 
– untrained (unknown) attack identification.  
      
     As it was mentioned earlier, five attacks were 
chosen to be used for this purpose: Buffer Overflow, 
Guess Password, NMap, Teardrop, and Warezclient. 
Datasets of these attacks were sent into the trained 
Neural Networks. Table 4 demonstrates the results: 
RBF neural network managed to identify the unknown 
attacks as one of the trained attacks in most cases. As 
for the MLP Neural Network, it succeeded only with 
NMap and Guess Password attacks. In other cases it 
identified the attacks as normal behavior. Thus, RBF 
displayed more capabilities in identifying unknown 
attacks while MLP failed in some cases. 

Table 4. Unknown Attacks Identification. 

Attack Name MLP RBF 
Buffer Overflow 53.3% 96.6% 

Guess Password 96.2% 100% 

NMap 99.5% 100% 

Teardrop 1% 84.9% 

Warezclient 8% 94.3% 

 As the previous research indicates, there were 
many attempts to detect and classify attacks. The 
winner of the last KDD intrusion detection 
competition, Dr. Bernhard Pfahringer of the Austrian 
Research Institute for Artificial Intelligence, used C5 
decision trees, the second-place performance was 
achieved by Itzhak Levin from LLSoft using Kernel 
Miner tool, and the third-place contestants, V. 
Miheev, A. Vopilov, and I. Shabalin of the company 
MP13, used a decision tree based expert system [3]. 
Also, we note the results of the most recent research 
made by Maheshkumar Sabhnani and Gursel Serpen 
of the Ohio University who used a multi classify 
model to achieve even better results than the winner of 
the KDD Cups contest [9].  

Table 5 compares the mentioned above results. As 
we can see, in some cases accuracy of the 
classification is as low as 8.4%, which is totally not 
acceptable. The main problem with the approach they 
had chosen was that they used all attacks in the 
dataset, though many of those attacks did not have 
enough records for training, as we outlined after the 
data formatting and optimization took place. If an 
attack does not have enough presence (IMAP attack 
had only 12 records), it should not be used for 
training.  

     Also, they grouped the attacks, what potentially 
can lead to a misdetection since not all of the attacks 
in the same group have identical signatures and 
patterns. Thus, a different approach was chosen to 
detect and classify attack. The main advantage of this 
approach was data formatting and the training dataset
grouping, which allowed us to increase the accuracy 
rate up to 100% in some cases, and to achieve a high 
percentage of identification of the attacks 
that were not included into the training set.  

Table 5. Result Comparison.

Probe DoS U2R R2L 

Accuracy 83.3% 97.1% 13.2% 8.4% KDD 
Cup 
Winner False 

Alarms 
0.6% 0.3% 0.1% 0.1% 

Accuracy 83.3% 97.1% 13.2% 8.4% KDD 
Cup 
Runner
Up 

False 
Alarms 

0.6% 0.3% 0.1% 0.1% 

Accuracy 88.7% 97.3% 29.8% 9.6% Multi-
Classifier

False 
Alarms 

0.4% 0.4% 0.4% 0.1% 

4. Conclusions 

     Modern commercially used Intrusion Detection 
Systems employ the techniques of expert systems that 
require constant updates from the vendors. These 
updates make the IDS static, not flexible, and not 
capable of detecting new attacks without new batches. 
To improve the security, a lot of researchers put 
efforts to utilize Artificial Intelligence techniques in 
the area of Intrusion Detection, in order to create 
systems capable of detecting unknown attacks, or/and 
learning new patterns by themselves. 

     Benchmarks were created to standardize and 
compare the work of different investigators of this 

Accuracy False 
Alarms 

Missed 
Attacks 

Mis- 
identified 
Attacks 

RBF 93.2% 0.8% 0.6% 5.4% 
MLP 92.2% 0 2.1% 5.7% 
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problem. Competitions were held to attract the 
attention of new researchers. In the most cases Neural 
Networks were used to detect attacks, and decision-
making trees were used to classify them. After 
extensive study, we decided to come up with a unique 
solution, and approached the problem with a new 
dataset formatting and optimization technique.  

     A library of attacks was created. This library was 
based on the benchmark provided by the MIT Lincoln 
Lab that was optimized by the KDD Cups. After the 
data was carefully formatted and optimized, it was 
decided to use and compare two different Neural 
Networks in attack detection and classification. Neural 
Networks were chosen due to their abilities to learn 
and classify. Trained Neural Networks can make 
decisions quickly, making it possible to use them in 
real-time detection. 

     Both types of Neural Networks managed to 
perform well on the known set of attacks, i.e. attacks 
that they were trained to identify and classify. After 
new attacks were added to the testing set, i.e. attacks 
that were not included into the training set, Radial 
Basis Function Neural Network performed 
significantly better than Multiple Layer Perceptron 
with the detection rate between 80% and 100%, and 
the false alarm rate not greater than 2%. 

     When we compared these results to the results of 
previous work, it was notable that the chosen 
technique had its advantages. First of all, we managed 
to correctly detect the attacks. Second, classification 
of the trained attacks was successful with the rate of 
90-100%. Third, and the most important, we were able 
to detect new unknown attacks, which were not 
included into the training set. The accuracy of 
detecting new unknown attacks was between 80% and 
100%. 

     After performing our experiments we concluded 
that with appropriate data formatting, optimization, 
and dataset composition, Neural Networks display a 
very good performance and potential in detecting and 
classifying trained attack, as well as new unknown 
attacks that were not included into the training set. 
Thus, the main goal of this research was 
accomplished. 

In the future we would like to investigate possibility 
of utilizing other types of neural networks to the task 
of intrusion detection. Additionally we would like to 
attempt to classify not just detect previously unknown 

problems, perhaps with a self-organizing neural 
network.   
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