
Equivalent Disk Allocations
Nihat Altiparmak, Student Member, IEEE, and Ali Şaman Tosun, Member, IEEE

Abstract—Declustering techniques reduce query response times through parallel I/O by distributing data among multiple devices.

Except for a few cases, it is not possible to find declustering schemes that are optimal for all spatial range queries. As a result of this,

most of the research on declustering have focused on finding schemes with low worst case additive error. Number-theoretic

declustering techniques provide low additive error and high threshold. In this paper, we investigate equivalent disk allocations and

focus on number-theoretic declustering. Most of the number-theoretic disk allocations are equivalent and provide the same additive

error and threshold. Investigation of equivalent allocations simplifies schemes to find allocations with desirable properties. By keeping

one of the equivalent disk allocations, we can reduce the complexity of searching for good disk allocations under various criteria such

as additive error and threshold. Using proposed scheme, we were able to collect the most extensive experimental results on additive

error and threshold in 2, 3, and 4 dimensions.

Index Terms—Declustering, parallel I/0, number theory, range query.

Ç

1 INTRODUCTION

SPACE requirement of many database applications includ-
ing relational databases, spatial databases, visualization

and GIS applications reach terabytes in size. Although
terabytes of storage space is now achievable, efficient
retrieval is a challenging problem. The most common query
type in such databases is range query. In a range query, the
user specifies an area of interest using a range of values for
each dimension. The result of the range query is the set of
items in the data set that have values within the specified
range for each dimension. As the size of the data set grows,
efficient retrieval becomes a challenge.

Research on spatial data management resulted in
efficient retrieval structures and methods [4], [16], [19],
[29]. Traditional retrieval methods based on index struc-
tures developed for single disk and single processor
environments are becoming ineffective for the storage and
retrieval in multiple processor and multiple disk environ-
ments. Since the amount of data is large, it is very natural to
use multidevice/disk architectures in these systems. Be-
sides scalability with respect to storage, multidisk archi-
tectures offer the opportunity to exploit I/O parallelism
during retrieval. The most crucial part of exploiting I/O
parallelism is to develop storage techniques that access the
data in parallel. A common approach for efficient parallel
I/O is as follows: the data space is partitioned into disjoint
regions, and data are allocated to multiple disks. When
users issue a query, data falling into disjoint partitions are
retrieved in parallel from multiple disks. This technique is
referred to as declustering and can be summarized as a good
way of distributing data to multiple I/O devices.

An allocation policy is said to be strictly optimal if no

query, which retrieves b buckets, has more than d bNe buckets

allocated to the same device, where N is the total number of
devices in the system. However, it has been proved that,
except in very restricted cases, it is impossible to reach strict
optimality for spatial range queries [2]. In other words, no
allocation technique can achieve optimal performance for
all possible range queries. The lower bound on extra disk
accesses is proved to be �ðlogNÞ for N disks even in the
restricted case of N �N grid [5].

Additive error of a range query is defined as the difference
between the actual and the optimal retrieval cost and
additive error of a declustering scheme is the maximum
additive error over all range queries. Threshold of a decluster-
ing scheme is k if all range queries with at most k buckets can
be retrieved optimally. Since it is not possible to find
declustering schemes that are optimal for all spatial range
queries, most of the research on declustering have focused on
finding schemes with low additive error and high threshold.
Periodic allocations yield low additive error and high
threshold; however, the number of periodic allocations is
large, i.e., polynomial in the number of disks and exponential
in the number of dimensions. Besides, finding the allocations
with the best additive error and threshold is not easy by
requiring exponential time computation in the number of
dimensions. In this paper, we investigate equivalence of disk
allocations that preserve additive error and threshold. For
example, rotations and reflections of a disk allocation
produce schemes with the same additive error and thresh-
old. In algebra, such transformations are called isometries.
The number of isometries of a d-dimensional hypercube is
d!2d. So, a d-dimensional disk allocation is equivalent to d!2d

other allocations and all of these allocations have the same
additive error and threshold (see Section 1 in supplementary
file, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.177).

Earlier version of this paper appeared in [39]. This paper
included extended scheme to reduce the number of alloca-
tions further using graph-theoretic approach, analysis results
showing effectiveness in high dimensions and extensive
experimental results. The rest of the paper is organized as
follows. In Section 2, we present the related work and

538 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

. The authors are with the Department of Computer Science, The University
of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX
78249. E-mail: {naltipar, tosun}@cs.utsa.edu.

Manuscript received 29 Dec. 2010; revised 25 Mar. 2011; accepted 4 May
2011; published online 13 June 2011.
Recommended for acceptance by J.C.S. Lui.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2010-12-0754.
Digital Object Identifier no. 10.1109/TPDS.2011.177.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

background information. In Section 3, we provide the
overview of the proposed scheme. We investigate equiva-
lence of disk allocations in Section 4 and discuss experimental
results in Section 5. Finally, we conclude with Section 6.

2 RELATED WORK AND BACKGROUND

In this section, we provide the related work, preliminaries
of declustering, definitions, and notations used in the paper
followed by the complexity of additive error calculation.

2.1 Related Work

Several methods have been proposed for declustering data
including Disk Modulo [9], Field-wise Exclusive OR [22],
Hilbert [10], Near Optimal Allocation [20], cyclic allocation
schemes [27], [28], Golden Ratio Sequences [6], Hierarchical
[5], and Discrepancy Declustering [8]. Using declustering
and replication, approaches including Complete Coloring
[15] has optimal performance and Square Root Colors Disk
Modulo [15] has one more than optimal. Some declustering
techniques utilize information about query distribution
[17], [18]. Use of combinatorial designs including latin
squares [21] and latin cubes [11] is proposed for a variant of
declustering problem where array blocks are distributed
among multiple memory modules. When the number of
disks is a power of two, a declustering scheme that
achieves the lower bound is proposed in [3]. Optimiza-
tion-based approaches [23], [24], [32] are proposed to
handle arbitrary data sets and queries.

All of these declustering schemes were designed
assuming a single copy of the data. Recently, replication
strategies for spatial range queries [7], [12], [13], [14], [15],
[41] and arbitrary queries [26], [30], [33], [35], [37] were
proposed. Replication improves the worst case additive
error for declustering using multiple copies of the data. In
addition to offering lower worst case additive error,
replication has many other advantages including better
fault tolerance and support for queries of arbitrary shape.
Readers are referred to [38] for an in-depth comparison of
replicated declustering schemes.

Threshold-based declustering [34], [36], [40] aims to
maximize the threshold k such that all spatial range queries
� k buckets are optimal. Upper bound of threshold is about
N
2 and threshold algorithms find schemes with threshold
better than N

4 in 2 dimensions. Further, related work is
provided in Section 2 of supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.177.

2.2 Definitions and Notations

The notation dxe is used for the ceiling of x, which is the
smallest integer not less than x, and the notation gcdða; bÞ is
used for greatest common divisor of a and b. We start with the
definition of periodic disk allocation.

Definition 1. A d-dimensional disk allocation scheme
fði1; i2; . . . ; idÞ is periodic, if fði1; i2; . . . ; idÞ ¼ ða1 � i1 þ
a2 � i2 þ � � � þ ad � idÞ mod N , whereN is the number of disks
and each ai i ¼ 1 � � � d satisfies gcdðai;NÞ ¼ 1 and ai 6¼ 0.

We use the notation ða1; a2; . . . ; adÞ for the d-dimensional
disk allocation ða1 � i1 þ a2 � i2 þ � � � þ ad � id modNÞ. Using
number theory, we can find the number of periodic disk
allocations in d-dimensions. First step is to find the number of
a � N that satisfies gcdða;NÞ ¼ 1. This number is known as

Euler totient function �ðNÞ and can be computed using the
prime factorization ofN . Let N ¼ p�1

1 :p
�2

2 � � � p
�k
k be prime

factorization of N where all p’s are distinct, then �ðNÞ can
be computed as

�ðNÞ ¼ p�1�1
1 :p�2�1

2 � � � p�k�1
k ðp1 � 1Þðp2 � 1Þ � � � ðpk � 1Þ:

Example 1. Consider N ¼ 12. Prime factorization of 12 is
22 � 3. Therefore, �ð12Þ ¼ 21 � ð2� 1Þ � 30 � ð3� 1Þ ¼
2 � 2 ¼ 4.

The values of �ðNÞ, for N up to 500 is provided in
Section 3 of supplementary file, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2011.177. Using
�ðNÞ the number of distinct periodic disk allocations in
d-dimensions can be computed. In d-dimensions, we have
d terms and �ðNÞ different values for each term. There-
fore, the number of d-dimensional periodic disk alloca-
tions is �ðNÞd. Most of the disk allocation schemes are
designed to improve the performance of range queries.

We use the following properties of gcd in the rest of the
paper. We provide them here without proof. Proof of them
follows by the definition and basic properties of gcd [31].

Property 1. If gcdða;NÞ ¼ 1, then gcdða�1; NÞ ¼ 1, where a�1

denotes the inverse of a.

Property 2. I f gcdða;NÞ ¼ 1 and gcdðb;NÞ ¼ 1 then
gcdðab;NÞ ¼ 1.

Property 3. If gcdða;NÞ ¼ 1 then gcdðN � a;NÞ ¼ 1

We next define a multidimensional range query.

Definition 2. An k1 � k2 � � � � � kd range query is a query that
has kj elements along jth dimension.

Based on above definition, the number of elements in a
multidimensional range query k1 � k2 � � � � � kd is

Qd
j¼1 kj.

The following theorem is the foundation of the proposed
scheme and is the fundamental reason why we focus on
periodic allocations. It shows that by testing a single range
query of a given size, we can determine the additive error
and threshold of all queries of that size.

Theorem 1. All k1 � k2 � � � � � kd range queries of a periodic
allocation have the same additive error and threshold.

Proof. See Section 5.1 in supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.177. tu

2.3 Preliminaries

Declustering of 5� 5 grid using five disks is given in Fig. 1.
Each square denotes a bucket and the number on the
square denotes the disk that the bucket is stored at. An
i� j query is a range query that has i rows and j columns.
For retrieval of an i� j query the best we can expect is dij5e
and this happens if the buckets of the query are spread to
disks in a balanced way. In most cases, this is not possible.
Consider the 2� 2 query shown in Fig. 1. Since two
buckets of the query are both stored on disk 1, it requires
two disk accesses to retrieve all the buckets such that in the
first access, the buckets from disk 0, disk 1, and disk 2 can
be retrieved in parallel and in the second access, the other

ALTIPARMAK AND TOSUN: EQUIVALENT DISK ALLOCATIONS 539

bucket from disk 1 can be retrieved. Deviation from dij5e is
called additive error. For the 2� 2 query the additive error
is 2� d2�25 e ¼ 1. The 2� 3 query given in the figure is
optimal, since it requires two disk accesses and d2�35 e is also
2, yielding 0 additive error. Additive error of a decluster-
ing scheme is the maximum additive error over all the
range queries.

2.4 Complexity of Computing Additive Error

Table 1 shows the comparison of algorithms and time-
memory trade-offs for computing additive error of a
declustering scheme. Details of the calculation and algo-
rithms are provided in Section 4 of supplementary file,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.177. OðNdþ1Þ is the most time efficient method
to calculate the additive error of a disk allocation scheme
with N disks in d-dimensions to the best of our knowledge;
however, it is still exponential in d. Therefore, decreasing
the number of allocations to be considered by finding the
equivalences of them is crucial.

3 OVERVIEW

Our general approach to equivalence of disk allocations
uses a graph-theoretic approach. Consider the graph shown
in Fig. 2. Periodic allocations in 2 dimensions for five disks
are shown in the figure. Each vertex shown by the pair ða; bÞ
denotes the allocation aiþ bjmod 5. Allocations that are
equivalent are connected by an edge in the graph. To find
the allocation giving the best additive error and threshold,
we would need to test all 16 allocations. But now, each
connected component in the graph shows equivalent
allocations. Since there are four connected components,
this reduces the number of allocations to test from 16 to 4.

Although graph-theoretic approach works well, initial
graph to be constructed is too large for high dimensions
and large values of N . We use algebraic approach to
reduce the number of allocations and then use the graph-
theoretic approach and connected components to reduce
them even further.

4 EQUIVALENT DISK ALLOCATIONS

In this section, we provide theoretical foundations of
equivalent disk allocations and propose a scheme to reduce

the number of disk allocations by eliminating allocations
that are equivalent.

4.1 Algebraic Approach

In this section, we present the algebraic approach to reduce
the number of allocations.

The simplest form of equivalence is when there is a 1-1
function between the allocations. The following theorem
shows that if there is a 1-1 function then retrieval cost of
queries is the same.

Theorem 2. Let fði1; i2; . . . ; idÞ be a number-theoretic disk
allocation and h : ZN ! ZN be a 1-1 function, then a spatial
range query Q can be retrieved with k disk accesses using
fði1; i2; . . . ; idÞ if and only if the query Q can be retrieved with
k disk accesses using hðfði1; i2; . . . ; idÞÞ.

Proof. See Section 5.2 in supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.177. tu

Based on the above theorem, we define equivalence of
disk allocations as follows.

Definition 3. Two d-dimensional disk allocations fði1;
i2; . . . ; idÞ and gði1; i2; . . . ; idÞ are equivalent if there exists a
1-1 function h that maps f to g.

Next, we provide theorems to show equivalence of
periodic disk allocations. These theorems are based on
number theory.

Theorem 3. The disk allocation ða1; a2; . . . ; adÞ is equivalent to the
disk allocation ðca1; ca2; ca3; . . . ; cadÞ, where gcdðc;NÞ ¼ 1.

Proof. Since gcdðc;NÞ ¼ 1. Multiplication by c is a 1-1
function. Therefore, the allocations are equivalent. tu

Example 2. 2D disk allocations fði; jÞ ¼ 2iþ j mod 5 and
gði; jÞ ¼ 4iþ 2j mod 5 are equivalent using Theorem 3,
since gcdð2; 5Þ ¼ 1. fði; jÞ can be represented as ð2; 1Þ and
ð2�2; 2�1Þ equals ð4; 2Þ which is representation of gði; jÞ.
fði; jÞ and gði; jÞ are shown in Figs. 3a and 3b, respectively.

Given a periodic disk allocation ða1; a2; . . . ; adÞ, the
number of periodic disk allocations equivalent to
ða1; a2; . . . ; adÞ using Theorem 3 is �ðNÞ � 1 since 1 is the
identity element and multiplication by 1 yields ða1;
a2; . . . ; adÞ. For the disk allocation ða1; a2; . . . ; adÞ, we can
multiply all the elements by a�1

1 and get the allocation
ð1; a�1

1 a2; . . . ; a�1
1 adÞ. This process reduces the number of

periodic d-dimensional disk allocations from �ðNÞd to

540 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

Fig. 1. Declustering of 5� 5 grid using five disks.

TABLE 1
Complexity Comparisons of Additive Error Calculation

Fig. 2. Graph structure for aiþ bjmod 5.

�ðNÞd�1. In other words, every periodic disk allocation is
equivalent to a periodic disk allocation in which the first
term is 1.

To find allocations with low worst case additive error
or high threshold there is another optimization that we
can use. Operations such as taking transpose of the grid
does not necessarily produce equivalent disk allocations.
However, additive error and threshold of the allocations
of the transpose grid will be the same as that of the
original. The reason is that these properties are defined
over all the queries and swapping queries does not make a
difference. To capture these, we define performance
equivalence of disk allocations as follows.

Definition 4. Two d-dimensional disk allocations fð:Þ and gð:Þ
are performance equivalent if there exists a 1-1 function h :
fð:Þ ! gð:Þ that maps every spatial query Q to a spatial range
query Q0 with the following conditions:

1. Q and Q0 have the same number of elements.
2. Number of disk accesses required forQ andQ0 are equal.

Example 3. 2D disk allocations fði; jÞ ¼ 2iþ j mod 5 and
gði; jÞ ¼ iþ 2j mod 5 are performance equivalent since
hðfði; jÞÞ ¼ fðj; iÞ ¼ gði; jÞ. fði; jÞ and gði; jÞ are shown in
Figs. 4a and 4b, respectively.

Next, we provide a theorem to identify performance
equivalent periodic disk allocations. Basic idea of the theorem
is that rearranging terms produces performance equivalent
disk allocations.

Theorem 4. The disk allocation ða1; a2; . . . ; adÞ is performance
equivalent to the disk allocation ðb1; b2; . . . ; bdÞ, where b0is are
a0js sorted in nondecreasing order (bi � biþ1 for i < d).

Proof. Follows by rearranging query dimensions according
to the transformation that places coefficients in non-
decreasing order. tu
Using Theorem 4, we can reduce the number of

allocations from �ðNÞd to

F ðN; dÞ ¼
Xd
k¼1

�ðNÞ
k

� �
d� 1
k� 1

� �
: ð1Þ

The equation is based on combinatorics and counts the

number of periodic disk allocations where the terms are

given in nondecreasing order. There are d slots for d-

dimensions. Since the allocations are periodic, we can place

�ðNÞ numbers in each slot. The variable k denotes the

number of distinct values used in the placement. We can

pick k numbers to place in these slots in ð�ðNÞ
k
Þ ways. To

indicate the boundaries between k distinct numbers, we

need k� 1 delimiters. We can place k� 1 delimiters at d� 1

slots in ðd�1
k�1Þ ways. Summing up over all the values of k

produces the desired result. By using the Vandermonde’s

identity, we can write F ðN; dÞ as follows:

F ðN; dÞ ¼
Xd
k¼1

�ðNÞ
k

� �
d� 1
d� k

� �
¼ �ðNÞ þ d� 1

d

� �
: ð2Þ

The fraction of allocations that remain after using

Theorem 4 is F ðN;dÞ
�ðNÞd . This fraction for 2-12 dimensions is

given in Fig. 5a. As the number of disks increase the fraction

decreases and finally goes to a constant when N !1.

Theorem 5.

lim
N!1

�ðNÞþd�1
d

� �
�ðNÞd

¼ 1

d!
:

Proof. See Section 5.3 in supplementary file, which can be

found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TPDS.2011.177. tu

As dimensionality increases the fraction decreases and

finally goes to 0 when d!1. This can be clearly observed

in Fig. 5b.

ALTIPARMAK AND TOSUN: EQUIVALENT DISK ALLOCATIONS 541

Fig. 3. Equivalent allocations using Theorem 3. Fig. 4. Equivalent allocations using Definition 4.

Fig. 5. Remaining allocations after Theorem 4.

Theorem 6.

lim
d!1

�ðNÞþd�1
d

� �
�ðNÞd

¼ 0:

Proof. See Section 5.4 in supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.177. tu

As it is clear from the Fig. 5, Theorem 4 alone shows
that huge majority of allocations are performance equiva-
lent. We next provide another way to reduce the number of
disk allocations by identifying performance equivalent
allocations.

Theorem 7. If gcdðaj;NÞ ¼ 1; 8j; 1 � j � d, then the disk
allocation ða1; a2; . . . ; aj; . . . ; adÞ is performance equivalent to
the disk allocation ða1; a2; . . . ; N � aj; . . . adÞ.

Proof. See Section 5.5 in supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.177. tu

Based on the properties of equivalence and performance
equivalence, we can use Algorithm 1 to eliminate alloca-
tions that are equivalent. This algorithm reduces the
number of allocations from �ðNÞd to

GðN; dÞ ¼
Xd�1

k¼1

�ðNÞ
2
k

� �
d� 2
k� 1

� �
: ð3Þ

Given an allocation, we can convert it into an equivalent
allocation with a1 ¼ 1 using Theorem 3. This reduces the
number of dimensions to be considered from d to d� 1.
Using Theorem 7, we can convert ajs that are greater than N

2

to a value � N
2 . With this optimization number of values to

be considered reduces from �ðNÞ to �ðNÞ
2 . Note that, �ðNÞ is

always even and if gcdða;NÞ ¼ 1 then gcdðN � a;NÞ ¼ 1 as
well. So, the restriction aj � N

2 eliminates half of �ðNÞ.
By using the Vandermonde’s identity and a similar

argument used in (2), we can write GðN; dÞ as follows:

GðN; dÞ ¼
Xd�1

k¼1

�ðNÞ
2
k

� �
d� 2
k� 1

� �
¼

�ðNÞ
2 þ d� 2
d� 1

� �
: ð4Þ

The fraction of allocations given by GðN;dÞ
�ðNÞd is given in

Fig. 6a for 2-12 dimensions. The fraction decreases as N

increases and finally goes to 0 when N !1. This can be

shown by calculating the following limit.

Theorem 8.

lim
N!1

�ðNÞ
2 þ d� 2
d� 1

� �

�ðNÞd
¼ 0:

Proof. See Section 5.6 in supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.177. tu

The fraction decreases as the number of dimensions
increases as it can be seen in Fig. 6b. The following limit
shows that GðN; dÞ ! 0 as d!1.

Theorem 9.

lim
d!1

�ðNÞ
2 þ d� 2
d� 1

� �

�ðNÞd
¼ 0:

Proof. See Section 5.7 in supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.177. tu

Above theorems show that eliminating equivalent
allocations is highly effective for large values of N and for
high dimensions. That is where the number of disk
allocations is large. So, proposed scheme helps most when
it is needed most.

Algorithm 1. GenerateSet(N).

1: S ¼ fða1; a2; . . . ; adÞ j gcdðaj;NÞ ¼ 1g
2: for each � 2 S do

3: if a1 6¼ 1 then

4: S ¼ S� �
5: for i ¼ 1 to d do

6: if ai >
N
2 then

7: S ¼ S� �
8: for i ¼ 1 to d� 1 do

9: if ai > aiþ1 then

10: S ¼ S� �
Note that the Algorithm 1 does not guarantee that the

remaining disk allocations are nonequivalent. For example,

542 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

Fig. 6. Remaining allocations after Algorithm 1.

consider 2D declustering of a 23� 23 grid using 23 disks.
The disk allocations ð1; 4Þ and ð1; 6Þ are equivalent using
N ¼ 23 disks. In Z23, inverse of 4 is 6. So, when we multiply
ð1; 4Þ by 6 we get ð6; 1Þ and when we reorder we get ð1; 6Þ.
However, using the algorithm both ð1; 4Þ and ð1; 6Þ will
remain in the set. We investigated this case further to see
how many other equivalent allocations are missed. For N ¼
23 the number of allocations left is 11 using the formula for
GðN ¼ 23; d ¼ 2Þ. However, out of 11 disk allocations only
six are nonequivalent. See Section 6 in supplementary file,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.177.

4.2 Graph-Theoretic Approach

In order to eliminate the equivalent disk allocations
remaining after Algorithm 1, we use our graph-theoretic
approach. In graph-theoretic approach, each allocation is
represented by a node and multiply, subtract, and reorder
operations are applied in order to find the equivalences of
the allocations. As a result of these operations, the nodes
representing the equivalent allocations are connected by an
edge. Then, connected components of the graph are found
and a single disk allocation from each connected compo-
nent is selected.

The algorithm given in Algorithm 2 is used to eliminate
performance equivalent allocations from the set. It starts
with the set S returned from Algorithm 1 and creates the
graph structure G by creating a node for each member of
the set on lines 2 and 3. There in no edge between nodes at
the beginning. Then for each node � of G, the algorithm first
uses multiplication operation on line 7, then subtraction on
line 9, and finally reordering on line 10; which basically
orders the dimensions of the allocation scheme in ascending
order. If it reaches a node other than �, then an edge is drawn
between the nodes on line 12. Number of connected
components in G gives us the final number of disk
allocations. We obtain the required allocations by getting
the first member of each component on line 15. The
complexity of this algorithm is OðjSj � N � dÞ and connected
components of a graph can be found in OðjV j þ jEjÞ time.

Algorithm 2. ReduceSet(S)

1: /�� ¼ ða1; a2; . . . ; adÞ; � ¼ ðb1; b2; . . . ; bdÞ� /

2: S ¼ GenerateSetðNÞ
3: G ¼ CreateGraphðSÞ
4: for each node � 2 G do

5: for c ¼ 2 to N do

6: for i ¼ 1 to d do

7: bi ¼ ðc � aiÞ%N
8: if bi >

N
2 then

9: bi ¼ N � bi
10: reorder(�)

11: if ð� ¼ �Þ&&ð� 2 GÞ then

12: DrawEdgeð�; �)

13: Comps ¼ FindComponentsðGÞ
14: for each component i in G do

15: ReducedSet þ ¼ Comps½i�½0�
Now, we will show how Algorithm 2 removes the

remaining allocations from the previous example; 2D

declustering of a 23� 23 grid using 23 disks. The

Algorithm should remove ð1; 6Þ from the set and leave its
equivalent ð1; 4Þ. It first converts ð1; 4Þ into an equivalent

representation by multiplying it by 6 for c ¼ 6 on line 6.
This produces the allocation ð6; 1Þ. There is no need for

subtraction, since all the dimensions are less than 11 (23=2).
It reorders ð6; 1Þ in ascending order on line 9. Since the

resulting tuple, ð1; 6Þ is in the set, it draws an edge between
ð1; 4Þ and ð1; 6Þ. By following a similar procedure, other

edges between ð1; 3Þ and ð1; 8Þ, ð1; 5Þ and ð1; 9Þ, ð1; 7Þ and
ð1; 10Þ, ð1; 2Þ and ð1; 11Þ are also drawn. The resulting graph

is shown in Fig. 7. Finally, six connected components are
found in the graph G and the first members of each

component gives us the final allocations, which are ð1; 1Þ,
ð1; 2Þ, ð1; 3Þ, ð1; 4Þ, ð1; 5Þ, and ð1; 7Þ.

5 EXPERIMENTAL RESULTS

In this section, we use the proposed algorithms to reduce
the number of disk allocations and then find the allocation

with lowest additive error and highest threshold using the
remaining disk allocations. By using the proposed scheme,

we were able to collect the most extensive experimental
results on finding the best additive error and threshold in

2, 3, and 4 dimensions. We have experimental results of N
up to 1,000 in 2 dimensions, up to 150 in 3 dimensions

and up to 55 in 4 dimensions. The experimental results
showing the allocation with the best additive error and

threshold are available on project web page [1]. Finally,
we evaluate the performances of different declustering

schemes by comparing their additive errors with the ones
we found for periodic allocations.

5.1 Performance of Graph-Theoretic Approach

In this section, we show how the graph-theoretic approach

further reduces the number of allocations. We implemented
the Algorithm 2 in C++ using the LEDA [25] library for the

graph structure and connected component calculation. We
used hash table to find set membership on line 10. Figures

are separated according to the factor size of N for the results
to be seen clearly. Let N ¼ p�1

1 :p
�2
2 . . . p�kk be prime factoriza-

tion of N , where all p’s are distinct, then the factor size of N
can be calculated as ð1þ �1Þ � ð1þ �2Þ � � � � � ð1þ �kÞ. Here,

we provide the results for N with two factors (prime
numbers), factor sizes of 4, 6, and 8 are provided in Section 7

of supplementary file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.

org/10.1109/TPDS.2011.177.

ALTIPARMAK AND TOSUN: EQUIVALENT DISK ALLOCATIONS 543

Fig. 7. Algorithm 2 for N ¼ 23, d ¼ 2.

Fig. 8 shows the number of final remaining allocations,

FinalReducedSet, as a result of the Graph-theoretic approach

proposed in this paper. The FinalReducedSet increases as N

and d increases. Note that the FinalReducedSet is much

higher, when N is prime since the number of periodic

allocations we start with, �ðNÞd, is also high for prime

numbers. We present the comparison of the original

approach to the proposed approach in Fig. 9. Fraction1 is
FinalReducedSet

GðN;dÞ , where GðN; dÞ is the result of the original

approach appeared in [39]. Fraction1 is always less than 1,

which means that the proposed approach reduces the

number of remaining allocations from the original approach

even further. Moreover, the fraction is smaller whenN and d

are larger meaning that it helps more when it is needed more.

Fig. 10 shows the dimensionality versus Fraction2.

Fraction2 is FinalReducedSet
�ðNÞd . As an example, Fraction2 is about

10�11 forN ¼ 17 and d ¼ 12, which means that it is enough to

find the best additive error and threshold once for every 1011

equivalent allocations. Instead of considering �ðNÞd ¼
ð16Þ12 ’ 2;814� 1011 allocations for best additive error and

threshold, we will only consider about 2,814 of them forN ¼
17 and d ¼ 12. We also measured the time that Algorithm 2

takes and results are presented in Section 7 of supplementary

file, which can be found on the Computer Society Digital

Library at http://doi.ieeecomputersociety.org/10.1109/

TPDS.2011.177.

5.2 Additive Error

Additive error of a query Q is the difference between the
optimal retrieval cost ðdjQjN eÞ and actual retrieval cost.
Additive error of a declustering scheme is the maximum
additive error over all the queries. In order to give the
reader a better understanding, distribution of additive error
for various values of N in 2, 3, and 4 dimensions are
provided in Section 7.1 of supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.177.
Equivalent disk allocations can be used to find declustering
schemes with low additive error efficiently. If two disk
allocations are equivalent or performance equivalent, then they
have the same additive error. Instead of searching through
all the �ðNÞd periodic allocations, we can only search
through the reduced set.

5.2.1 Lowest Additive Error of the Final Reduced Set

Lowest additive error of the final reduced set is given in
Fig. 11a for N up to 1,000 in 2 dimensions, in Fig. 11b for
N up to 150 in 3 dimensions and Fig. 11c for N up to 55 in
4 dimensions. Additive error increases as dimensionality
increases. Additive error fluctuates due to the number-
theoretic properties of the number of disks. For values of
N , where �ðNÞ is small, additive error is lower. For prime
numbers �ðNÞ ¼ N � 1 and number of periodic disk
allocations are much higher.

5.3 Threshold

The threshold of a declustering scheme f , �ðfÞ, is k if all
range queries on f with at most k buckets can be retrieved
optimally. It is desirable to find declustering schemes with
high threshold. In order to give the reader a better

544 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

Fig. 8. Dimension versus final remaining allocations.

Fig. 9. Dimension versus Fraction1.

Fig. 10. Dimension versus Fraction2.

Fig. 11. Lowest additive error for two, three, and four dimensions.

understanding, distribution of threshold for various values
of N in 2, 3, and 4 dimensions are provided in Section 7.2 of
supplementary file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2011.177. Equivalent disk allocations
can be used to find declustering schemes with high
threshold. If two disk allocations are equivalent or perfor-
mance equivalent, then they have the same threshold. Instead
of searching through all the �ðNÞd periodic allocations, we
can only search through the reduced set.

5.3.1 Highest Threshold of the Reduced Set

Highest threshold of the reduced set is given in Fig. 12a for
N up to 1,000 in 2 dimensions, in Fig. 12b for N up to 150 in
3 dimensions and Fig. 12c for N up to 55 in 4 dimensions.
Threshold decreases as dimensionality increases. Threshold
fluctuates due to the number-theoretic properties of the
number of disks. For prime numbers threshold is higher,
this is because of the large number of periodic allocations
when N is prime.

5.4 Performance of Declustering Schemes

In this section, we briefly discuss the performance of
periodic disk allocations by comparing the experimental
results presented in [3] with ours. Table 2 shows the
additive error for periodic disk allocation (PERIODIC) and
some major existing allocation schemes described in
Section 2.1 such as Disk Modulo (DM) [9], Field-wise
Exclusive OR (FX) [22], Hilbert (H) [10], Generalized
Fibonacci from cyclic allocation schemes (GFIB) [27], and
(Almost) Optimal allocation scheme (AOPT) proposed in
[3]. We have results for 16 and 64 disks in 2 dimensions and
for eight disks in 3 dimensions. For all allocation schemes, a
grid of N �N is used in 2 dimensions and N �N �N is
used in 3 dimensions.

As it is clear from the table, periodic allocations yield the
lowest additive error among all the declustering schemes
presented. According to the experimental results, additive
error of a periodic allocation is not more than two for N up

to 216 in 2 dimensions. Although periodic disk allocations
offer superior results, since the number of periodic
allocations, �ðNÞd, are high, it was a challenge to find the
allocation yielding the best additive error among them for
large N and d. However, reducing the number of allocations
by using the equivalencies of them makes it possible to
calculate the lowest additive error of a periodic declustering
scheme for larger N and d as it is presented in this paper.
Note that best additive errors as well as best thresholds
have already been calculated and the results are presented
in the project web page [1] for N up to 1,000 in 2
dimensions, 150 in 3 dimensions, and 55 in 4 dimensions.

6 CONCLUSION

In this paper, we investigated equivalence of periodic
declustering schemes. Intuitively, a large number of
declustering schemes given by isometries of hypercube are
equivalent, and produce the same additive error and
threshold. Periodic allocations received a lot of interest
and produce superior results. However, finding the best
periodic allocation requires an exhaustive search. In this
paper, we showed that a huge fraction of periodic
allocations are equivalent using number theory and elimi-
nated these equivalent allocations using a graph-theoretic
approach. Exhaustive search to find declustering schemes
with low additive error or high threshold benefits a lot from
equivalent allocations since only one of the equivalent
allocations needs to be considered. We have experimental
results for 2 dimensions up to 1,000 nodes, two dimensions
up to 150 nodes, and 4 dimensions up to 55 nodes to show
the feasibility of the approach. To the best of our knowledge,
this is the most extensive experimental results collected for
the best additive error and threshold.

ACKNOWLEDGMENTS

This research was supported by US National Science
Foundation (NSF) grants CCF-0702728 and CNS-0855247.

REFERENCES

[1] Project Webpage, http://gozde.cs.utsa.edu/allocations, 2011.
[2] K.A.S. Abdel-Ghaffar and A. El Abbadi, “Optimal Allocation of

Two-Dimensional Data,” Proc. Sixth Int’l Conf. Database Theory
(ICDT), pp. 409-418, Jan. 1997.

[3] M.J. Atallah and S. Prabhakar, “(Almost) Optimal Parallel Block
Access for Range Queries,” Proc. 19th ACM SIGMOD-SIGACT-
SIGART Symp. Principles of Database Systems (PODS), pp. 205-215,
May 2000.

ALTIPARMAK AND TOSUN: EQUIVALENT DISK ALLOCATIONS 545

Fig. 12. Highest threshold for 2, 3, and 4 dimensions.

TABLE 2
Performance Comparison of Declustering Schemes

[4] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The R*
Tree: An Efficient and Robust Access Method for Points and
Rectangles,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 322-331, 1990.

[5] R. Bhatia, R.K. Sinha, and C.-M. Chen, “Hierarchical Declustering
Schemes for Range Queries,” Proc. Seventh Int’l Conf. Extending
Database Technology (EDBT), pp. 525-537, Mar. 2000.

[6] C.-M. Chen, R. Bhatia, and R. Sinha, “Declustering Using Golden
Ratio Sequences,” Proc. 16th Int’l Conf. Data Eng. (ICDE), pp. 271-
280, 2000.

[7] C.-M. Chen and C. Cheng, “Replication and Retrieval Strategies of
Multidimensional Data on Parallel Disks,” Proc. Conf. Information
and Knowledge Management (CIKM), Nov. 2003.

[8] C.-M. Chen and C.T. Cheng, “From Discrepancy to Declustering:
Near Optimal Multidimensional Declustering Strategies for Range
Queries,” Proc. 21st ACM SIGMOD-SIGACT-SIGART Symp.
Principles of Database Systems (PODS), pp. 29-38, 2002.

[9] H.C. Du and J.S. Sobolewski, “Disk Allocation for Cartesian
Product Files on Multiple-Disk Systems,” ACM Trans. Database
Systems, vol. 7, no. 1, pp. 82-101, Mar. 1982.

[10] C. Faloutsos and P. Bhagwat, “Declustering Using Fractals,” Proc.
Second Int’l Conf. Parallel and Distributed Information Systems,
pp. 18-25, Jan. 1993.

[11] C. Fan, A. Gupta, and J. Liu, “Latin Cubes and Parallel Array
Access,” Proc. Eighth Int’l Parallel Processing Symp., 1994.

[12] H. Ferhatosmanoglu, A.Ş. Tosun, G. Canahuate, and A.
Ramachandran, “Efficient Parallel Processing of Range Queries
through Replicated Declustering,” J. Distributed and Parallel
Databases, vol. 20, pp. 117-147, 2006.

[13] H. Ferhatosmanoglu, A.Ş. Tosun, and A. Ramachandran, “Re-
plicated Declustering of Spatial Data,” Proc. 23rd ACM SIGMOD-
SIGACT-SIGART Symp. Principles of Database Systems, pp. 125-135,
June 2004.

[14] K. Frikken, “Optimal Distributed Declustering Using Replica-
tion,” Proc. 10th Int’l Conf. Database Theory (ICDT), pp. 144-157,
2005.

[15] K. Frikken, M. Atallah, S. Prabhakar, and R. Safavi-Naini,
“Optimal Parallel I/O for Range Queries through Replication,”
Proc. 13th Int’l Conf. Database and Expert Systems Applications
(DEXA), pp. 669-678, 2002.

[16] V. Gaede and O. Gunther, “Multidimensional Access Methods,”
ACM Computing Surveys, vol. 30, pp. 170-231, 1998.

[17] S. Ghandeharizadeh and D.J. DeWitt, “Hybrid-Range Partitioning
Strategy: A New Declustering Strategy for Multiprocessor
Database Machines,” Proc. 16th Int’l Conf. Very Large Databases
(VLDB), pp. 481-492, Aug. 1990.

[18] S. Ghandeharizadeh and D.J. DeWitt, “A Multiuser Performance
Analysis of Alternative Declustering Strategies,” Proc. Sixth Int’l
Conf. Data Eng. (ICDE), pp. 466-475, Feb. 1990.

[19] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 47-57, 1984.

[20] K.A. Hua and H.C. Young, “A General Multidimensional Data
Allocation Method for Multicomputer Database Systems,” Proc.
Database and Expert System Applications, pp. 401-409, Sept. 1997.

[21] K. Kim and V.K. Prasanna-Kumar, “Latin Squares for Parallel
Array Access,” IEEE Trans. Parallel and Distributed Systems, vol. 4,
no. 4, pp. 361-370, Apr. 1993.

[22] M.H. Kim and S. Pramanik, “Optimal File Distribution for Partial
Match Retrieval,” Proc. ACM SIGMOD Int’l Conf. Management of
Data, pp. 173-182, 1988.

[23] M. Koyuturk and C. Aykanat, “Iterative-Improvement-Based
Declustering Heuristics for Multi-Disk Databases,” Information
Systems, vol. 30, no. 9, pp. 47-70, 2005.

[24] D. Liu and M. Wu, “A Hypergraph Based Approach to
Declustering Problems,” Distributed and Parallel Databases,
vol. 10, no. 3, pp. 269-288, 2001.

[25] K. Mehlhorn and S. Näher, “Leda: A Platform for Combinatorial
and Geometric Computing,” Comm. ACM, vol. 38, no. 1, pp. 96-
102, 1995.

[26] K. Yasin Oktay, A. Turk, and C. Aykanat, “Selective Replicated
Declustering for Arbitrary Queries,” Proc. 15th Int’l Euro-Par Conf.
Parallel Processing, pp. 375-386, 2009.

[27] S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal, and A. El Abbadi,
“Cyclic Allocation of Two-Dimensional Data,” Proc. 14th Int’l Conf.
Data Eng. (ICDE), pp. 94-101, 1998.

[28] S. Prabhakar, D. Agrawal, and A. El Abbadi, “Efficient Disk
Allocation for Fast Similarity Searching,” Proc. 10h Ann. ACM
Symp. Parallel Algorithms and Architectures (SPAA ’98) pp. 78-87,
June 1998.

[29] H. Samet, The Design and Analysis of Spatial Structures. Addison
Wesley, 1989.

[30] P. Sanders, S. Egner, and K. Korst, “Fast Concurrent Access to
Parallel Disks,” Proc. 11th ACM-SIAM Symp. Discrete Algorithms,
2000.

[31] H. Shapiro, Introduction to the Theory of Numbers. John Wiley and
Sons, 1983.

[32] S. Shektar and D. Liu, “Partitioning Similarity Graphs: A Frame-
work for Declustering Problems,” Information Systems, vol. 21,
no. 6, pp. 475-496, 1996.

[33] A.Ş. Tosun, “Replicated Declustering for Arbitrary Queries,” Proc.
ACM Symp. Applied Computing, pp. 748-753, Mar. 2004.

[34] A.Ş. Tosun, “Constrained Declustering,” Proc. Int’l Conf. Informa-
tion Technology Coding and Computing, pp. 232-237, Apr. 2005.

[35] A.Ş. Tosun, “Design Theoretic Approach to Replicated Decluster-
ing,” Proc. Int’l Conf. Information Technology Coding and Computing,
pp. 226-231, Apr. 2005.

[36] A.Ş. Tosun, “Threshold Based Declustering in High Dimensions,”
Proc. Int’l Conf. Database and Expert Systems Applications, pp. 818-
827, Aug. 2005.

[37] A.Ş. Tosun, “Efficient Retrieval of Replicated Data,” J. Distributed
and Parallel Databases, vol. 19, nos. 2/3, pp. 107-124, 2006.

[38] A.Ş. Tosun, “Analysis and Comparison of Replicated Declustering
Schemes,” IEEE Trans. Parallel and Distributed Systems, vol. 18,
no. 11, pp. 1578-1591, Nov. 2007.

[39] A.Ş. Tosun, “Equivalent Disk Allocations,” Proc. 22nd ACM Symp.
Applied Computing, pp. 500-505, 2007.

[40] A.Ş. Tosun, “Threshold-Based Declustering,” Information Sciences,
vol. 177, no. 5, pp. 1309-1331, 2007.

[41] A.Ş. Tosun and H. Ferhatosmanoglu, “Optimal Parallel I/O Using
Replication,” Proc. Int’l Conf. Parallel Processing (ICPP), pp. 506-
513, Aug. 2002.

Nihat Altiparmak (S’10) received the BS
degree in computer engineering from Bilkent
University, Ankara, Turkey, in 2007. Since 2007,
he has been working toward the PhD degree as
a graduate research assistant in the Department
of Computer Science at the University of Texas
at San Antonio. His research interests include
network security and storage systems; specifi-
cally focusing on parallel I/O, flash-based
storage systems and storage QoS. He is a

student member of the IEEE.

Ali Şaman Tosun (M’06) received the BS
degree in computer engineering from Bilkent
University, Ankara, Turkey in 1995, the MS and
PhD degrees from the Ohio State University in
1998 and 2003, respectively. He joined the
Department of Computer Science at the Uni-
versity of Texas at San Antonio in 2003.
Currently, he is an associate professor in the
Department of Computer Science at the Uni-
versity of Texas at San Antonio. His research

interests include storage systems, large-scale data management, and
security. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

546 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

