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Low-Cost Indoor Location Management for Robots Using IR Leds
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Many applications in wireless sensor networks can benefit from position information. However, existing
accurate solutions for indoor environments are costly. Radio-Frequency (RF)-based approaches are not suit-
able for some indoor environments such as factory floors where heavy machinery can cause interference.
We propose a low-cost and simple location management system using infrared (IR) leds and the Wii Remote
Controller (WRC) which has an IR camera. The proposed solution is motivated by the need to find the location
of a mobile robot used for data collection in a wireless sensor network. In the proposed schemes, the WRC
is placed vertically on the mobile robot pointing upward and IR leds are placed irregularly on the ceiling.
The mobile robot determines its position using the relative positions of the IR leds detected by the WRC.
The WRC senses a few IR leds at a time, and they are differentiated using the irregularity among them.
We analyze the problem theoretically and show that there exist limitations for covering large areas. We also
discuss how to overcome these limitations. For small coverage areas, we provide optimal solutions using
linear programming. The proposed scheme uses the resources efficiently and can cover a large area using a
single WRC and multiple IR leds. We have simulation results including nonvertical placements of the WRC.
The proposed scheme is easy to implement and requires minimal bandwidth for location management.
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1. INTRODUCTION

A wireless sensor network (WSN) consists of potentially thousands of sensor nodes
and is deployed in an ad hoc manner for collecting data from a region of interest over
a period of time. Even though the technology is new, WSNs received an enthusiastic
reception in the science community as WSNs enable precise and fine-grain monitoring
of a large region in real time. Some examples of successful large-scale deployments
of WSNs to-date are in the context of ecology monitoring (monitoring of microclimate
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forming in redwood forests [Tolle et al. 2005]), habitat monitoring (monitoring of nest-
ing behavior of seabirds [Mainwaring et al. 2002]), and military surveillance (detection
and classification of an intruder as a civilian, soldier, car, or SUV [Arora et al. 2004,
2005]). Also, an alarm system to be used for safety-critical systems such as fire and
burglar alarms designed for indoor environments is studied [Strasser et al. 2007].

To improve the scalability and performance of WSNs, there has been a flurry of
work on employing a mobile node for data collection. The data mules [Shah et al.
2003] work exploits random movement of a mobile node to opportunistically collect
data from a sparse WSN. Here, the nodes buffer all their data locally and upload
the data only when the mobile node arrives within direct communication distance.
The Zebranet [Juang et al. 2002] system uses tracking collars carried by animals for
wildlife tracking. Data is forwarded in a peer-to-peer manner and redundant copies are
stored in other nodes. A shared wireless infostation model [Small and Haas 2003] uses
radio-tagged whales as part of a biological information acquisition system. Mobility
of the mobile node is not controlled in these approaches. Mobile element scheduling
(MES) work [Somasundara et al. 2004] considers controlled mobility of the mobile node
to reduce latency and serve the varying data rates in the WSNs effectively. The MES
work shows that the problem of planning a path for the mobile node to visit the nodes
before their buffers overflow is NP-complete. Heuristic-based solutions are proposed to
address this problem [Somasundara et al. 2004; Gu et al. 2005; Zhao and Ammar 2003].
Sencar [Ma and Yang 2007] uses a mobile observer to collect data. Area is divided into
regions and the mobile node moves in straight lines in each region. Multihop forwarding
is used to relay packets from distant sensors to sencar. Data salmon [Demirbas et al.
2007] constructs a spanning tree and moves the mobile basestation on this tree to
optimize the cost of retrieval. To reduce the size of the path that the mobile node travels,
rendezvous points are used as regional collection points and the mobile node collects
the data from the rendezvous points [Xing et al. 2007]. Mobile nodes are also used
for data collection, storage, and retrieval in underwater sensor networks [Vasilescu
et al. 2005]. This work assumes a single mobile node. Multiple mobile nodes are also
proposed to improve the performance [Jea et al. 2005] using load balancing between
the mobile nodes.

Efficient use of mobile nodes requires location information. A mobile robot should
know its approximate location to follow predetermined optimal paths and make
location-dependent decisions. Individual sensors should also know the location of the
mobile to coordinate sleep-wakeup schedules and save resources. Location manage-
ment schemes using GPS [Getting 1993] are not suitable for indoor environments.
Existing approaches include RADAR [Bahl and Padmanabhan 2000] which uses RF to
locate and track users inside buildings. RF-based schemes use RSSI (Received Signal-
Strength Indicator), which is obtained automatically with the received messages in
most sensor radios. Although RF-based schemes provide the cheapest localization tech-
nique [Stoyanova et al. 2007], they yield very noisy estimations, especially for indoor
systems [Whitehouse et al. 2007]. Also, the RSSI values depend on many factors rang-
ing from the antenna orientation to the environment specifics [Stoyanova et al. 2007].
In a factory setting, heavy machinery causes the RF signal interference, impeding
the accuracy of the localization service based on RF signals. To overcome limitations
of RF-only schemes, a combination of RF and ultrasound is used to provide location
information in some applications [Priyantha et al. 2000; Harter et al. 1999]. In anchor-
node-based localization, a subset of nodes called anchors know their location [Bulusu
et al. 2000]. Using these anchor nodes, the error from RF signals is mitigated. Anchor
nodes can be mobile and broadcast their location periodically so that other sensors are
able to calculate their locations using the broadcasts [Ssu et al. 2005].
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Robot localization has received a lot of interest recently in robotics. Robot localiza-
tion is the process of obtaining the robot’s position using sensor readings. Different
types of sensors, such as sonar, inertial, RF, and laser sensors, have been used. Dead
Reckoning (DR) is a technique commonly used to predict the current location of a robot
using inertial sensors and the previous positions of the robot [Chung et al. 2001; Tsai
1998; Golfarelli et al. 2001]. However, DR cannot be used solely since it is based on
the previous locations. If DR is used continuously for a long period of time, a huge
deviation from the real position of the robot occurs. A combination of sensor types
can be used for robot localization. For example, both RF and inertial sensors are used
to acquire a better accuracy on the location of the mobile robot [Zmuda et al. 2008].
Radio-frequency-identification (RFID)-based solutions are proposed for indoors [Choi
et al. 2011; Miah and Gueaieb 2010; Hahnel et al. 2004]. The main problem with
RFID-based solutions is the accuracy. The most accurate systems that use other sen-
sors in addition to RFID tags have 1.5 to 2.5cm error on the estimation of the location
of the robot on average [Choi et al. 2011]. There are also robot localization schemes
that use landmarks [Betke and Gurvits 1997]. In these systems, the robot senses
the landmarks and figures out its location relatively. Simultaneous localization and
mapping (SLAM) algorithms are used for building a map of the environment while
estimating the robot pose [Dissanayake et al. 2001; Montemerlo et al. 2002; Eliazar
and Parr 2003; Jeong and Lee 2005]. CV-SLAM [Jeong and Lee 2005] uses an upward
camera and it requires high computation complexity since it involves image process-
ing to match the landmark images correctly. There are also commercial systems for
indoor localization. A new startup, ByteLight [2013], uses special LED bulbs which
emit a form of barcode that can be read and interpreted by one’s smartphone for indoor
localization.

In this article, we propose a framework for indoor location management using an
InfraRed (IR) camera, and IR leds. For this purpose, we picked Wii Remote Con-
troller (WRC) as the IR camera, since it is a low-cost device. The goal is to find the
location of a mobile element accurately. The WRC has an observation window (OW)
with a resolution of 1024 × 768 pixels and can detect each IR led as one pixel having
Wii.x- and Wii.y-coordinates. Each WRC has the capability of broadcasting the coordi-
nates through bluetooth. The WRC is placed at the center of the robot in an upright
position pointing to the ceiling. By carefully placing the IR leds on the ceiling, the
location of a mobile robot is calculated using the WRC. The IR leds are placed on the
ceiling so that the led pairs generated by the IR leds are distinct as much as possible
in terms of their length and slope values. The robot estimates its position by explor-
ing the distinct led pairs in its OW. A proper placement of the IR leds is challenging,
so we propose several schemes that produce irregular placements with distinct pairs
and compare them. Once a placement is picked, the IR leds are placed on the ceiling.
Also, the placement found is installed on the ME (mobile element). The ME uses the
led placement and the data from the WRC to figure out its current position. Having
irregular placement of the IR leds, an ME is able to distinguish the IR-led pairs and
estimate its location. A proper led placement solution should have as many distinct
led pairs as possible. In a perfect solution, all the led pairs are unique. However, it is
theoretically impossible to acquire a perfect solution for the led placement when the
size of the coverage area in consideration increases. We provide some theoretical re-
sults showing that it is not possible to guarantee the constraints required for a perfect
solution for large coverage areas. The system can be used for both instant localization
and tracking. The ME is capable of finding its location by observing the IR leds. Then,
the ME uses the location information for location-dependent decisions. Therefore, in-
stant localization is a natural outcome of the system. In case a central system seeks
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Fig. 1. Tracking system.

to track the mobile element, the mobile element broadcasts its location periodically so
that the basestation knows the mobile element’s location. Using simulations, we show
that, in order to achieve good location estimations, a perfect led placement is not a
necessity when dead reckoning is used as an auxiliary technique. In simulations, we
also consider erroneous alignment of the WRC. The proposed framework can also be
used for multiple robots without any extra resources. In this work, the terms mobile
robot, mobile element (ME), mobile device, and robot are used interchangeably. An
earlier version of this article appeared in the 28th IEEE International Performance
Computing and Communications Conference (IPCCC ’09) [Tas et al. 2009].

The rest of the article is organized as follows. The proposed tracking system is de-
scribed in Section 2. The problem of proper placement of the IR leds on the ceiling
is formulated in Section 3. Proposed schemes that generate proper placements are
discussed in Section 4. Since accurate location estimations depend on the irregularity
of the led placements (the more irregular the led placement, the more accurate the
location estimations), we compare the proposed schemes in terms of their irregularity
in Section 5. There exist limitations on providing a perfect irregularity for the led place-
ment. We analyze these limitations theoretically in Section 6. Section 7 discusses how
to differentiate the led pairs having equal slope-length values showing the distances
between them as well as the frequency of the led pairs having equal slope-length val-
ues. The simulation results on the accuracy of our framework including the misaligned
WRC (placed nonvertically on the top of the ME) are shown in Section 8. Finally, we
conclude with Section 9.

2. PROPOSED TRACKING SYSTEM

The WRC is placed at the center of the mobile device in an upright position pointing
to the ceiling with the tip of its IR camera sensor. IR light sources are placed at a
certain height pointing to the floor, as shown in Figure 1. First, we consider the robot
moving only vertically and horizontally, without changing its orientation and then we
consider rotations of the robot. To expand the coverage area to arbitrary-sized grids,
it is enough to increase the number of IR light sources used. No additional WRCs are
needed. Therefore, the cost is quite low since the cost of one WRC corresponds to the
cost of nearly 200 IR light sources. If a fixed WRC was placed on the ceiling and one IR
sensor was placed on the mobile robot, multiple WRCs would be needed to expand the
coverage area, resulting in a costly solution.

WRC is the Nintendo Wii game-console’s controller, released in November 2006. WRC
has an Infrared (IR) camera that provides high-resolution and high-speed tracking of
up to four IR light sources at the same time. More than four IR leds cannot be tracked
by the WRC. The camera provides location data with a resolution of 1024 × 768 pixels
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Fig. 2. Irregular placement of IR leds.

with a 100 Hz refresh rate, and a 45-degree horizontal field of view [Lee 2008]. WRC
has a suggested retail price of US$40. The IR leds we used are TSAL6400 high-power
infrared-emitting diodes, with a peak wavelength of 940 nanometer, radiant power of
35 milliwatt, and half-sintensity angle of ±25◦. The average expected lifetime of the
leds is 10 or more years [Vishay Semiconductors 2004]. An IR led costs about US$0.20.
The mobile robot senses the IR leds using the WRC attached on top of it. Then, it
calculates its current position using the sensed information.

Our goal is to find the location of the mobile robot using the positions of IR leds
detected by the WRC. The area covered is large and the WRC is able to see only a
fraction of the area and detect only a subset of the IR leds. The sensible area is called
observation window (OW). The size of the OW of the WRC depends on the height
from the IR camera on WRC to the IR leds on the ceiling. The robot should be able
to determine its position using the locations of the IR leds read from the WRC. One
challenge is that the IR camera cannot differentiate IR light sources. There are no
unique IDs corresponding to IR light sources. In this setting, the IR leds have to be
differentiated in order to figure out the location of the mobile robot. One way of solving
this problem is examining the slopes and distances of the IR-led pairs. If the IR leds are
placed so that each IR-led pair has a unique slope and distance values, then the robot
can figure out its location perfectly using this uniqueness. As a result, the key point
is irregular placement of IR light sources. Once a proper IR led placement pattern
is found, the map of the IR led locations is fed to the robot. Using its map and the
locations of the IR leds read from the WRC (the relative positions of each IR led with
respect to each other), the robot can identify the IR leds detected by the WRC. After
identifying the IR leds, it is trivial to find the physical location of the mobile robot.
An example of an irregular placement of IR leds is given in Figure 2. The vectors we
consider are {(1,2); (1,3); . . . ; (4,5)}, where a vector is represented as (startLed, endLed).
The corresponding slope-and-length pairs of these vectors are {(−3,
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√
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√
5)}, where

a pair is represented as (slope, length) and none of the IR-led pairs has the same slope
and length. Assuming the thick rectangle in the figure is the observation window that
the WRC sees, then the location of the mobile element is figured out by examining the
IR leds in this window. The slope-length pairs in WRC’s window are computed. In the
example, the WRC sees two IR leds and the slope-length pair is computed as (−1,

√
2).

Since all the slope-length pairs are unique, the corresponding vector (3, 4) is found.
Once the vector is found, it is trivial to find out the location of the mobile element
because we know the global locations of the IR leds that constitute the found vector.
As the proper placement of the IR leds plays a crucial role in finding the location of the
mobile element, we discuss different schemes on how to place the IR leds on the ceiling
in Section 4.

We first consider the axis-aligned movement (horizontally and vertically) of the mo-
bile robot without changing its orientation. Then, this scheme can be extended for the
rotations of the mobile robot using the following approach. We handle the rotations by
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Fig. 3. Costas-array-based tracking.

Fig. 4. Rotations.

reducing the problem to only the vertical-horizontal movement case. When a window of
size 4m × 3m (local window) is rotated, it will have an axis-aligned 4k×3k window in it.
If we can guarantee two IR sensors in this 4k×3k window, then we can guarantee two IR
sensors in the rotated 4m × 3m window. We compute the maximum 4k×3k axis-aligned
rectangle area inside the big rotated 4m × 3m rectangle for a given rotation angle
α as shown in Figure 4(a). The ratio of area of the axis-aligned rectangle to rotated
rectangle is ( 3

4sin(α)+3cos(α) )
2. The value of alpha that minimizes this is α = 53◦ and the

area ratio is 9
25 , which means that the smallest axis-aligned 4k × 3k rectangle is 36%

of the bigger one. If our window size is 1024 × 768, we have to guarantee two static IR
leds in every 614×460 axis-aligned area to make our system work in rotations as well.

When the robot rotates, we will not be able to use slope information, which will
cause a problem in identification of IR leds if there are more than two leds in the local
area and there is no unique distance between any of the pairs. Let’s see whether the
sole use of distance information suffices for location computation. Figure 4(b) shows
the frequencies of different distance values of each led pair in the global window for
Figure 3(b). Maximum frequency is 5 and more than 3 is quite rare, which means not
having a unique distance pair is a low probability. Besides, in a large number of cases,
more than two IR sensors will be in the window, resulting in at least three pairs. If
a pair does not produce a unique distance, another pair can be used. If there are less
than three leds in the local window and the distance value is not unique, the locations
of pairs in the previous window can be kept and distinct distance pairs can be found.
By making the calculation for the nearest previous window, the location of the robot
can be found.
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3. PROBLEM FORMULATION

Proper placement of the IR leds on the ceiling is challenging and it is the goal of
the proposed methods. We name this problem Wii Coverage Problem (WCP) and its
definition is the following.

Definition 3.1 (Wii Coverage Problem [WCP(N1, N2, a, b, k)]). Given positive inte-
gers N1, N2, a ≤ N1, b ≤ N2, and k ≤ a ∗ b, create a set of possible led locations
L = {1, 2, . . . , N1 ∗ N2} in an N1 × N2 array. Find a minimum-cardinality subset of led
locations L′ ⊆ L satisfying the condition that each a × b subarray of the N1 × N2 array
has at least k leds in it.

Here, N1 × N2 array represents the ceiling and each a × b array represents an
Observation Window (OW). WCP is a nontrivial optimization problem since it is asking
the minimum-cardinality subset. In order to show its hardness, we recast WCP as a
decision problem and apply the theory of NP-completeness as follows.

Definition 3.2 (Wii Coverage Decision Problem [WCDP(N1, N2, a, b, k, K)]). Given
positive integers N1, N2, a ≤ N1, b ≤ N2, k ≤ a ∗ b, and K ≤ N1 ∗ N2, create a set
of possible led locations L = {1, 2, . . . , N1 ∗ N2} in an N1 × N2 array. Is there a subset of
led locations L′ ⊆ L with |L′| ≤ K satisfying the condition that each a × b subarray of
the N1 × N2 array has at least k leds in it?

Hitting set is a well-known NP-complete problem [Garey and Johnson 1990] and it
is polynomial-time-reducible to the restricted case of WCDP.

Definition 3.3 (Hitting Set). Given a collection C of subsets of a finite set S and a
positive integer K ≤ |S|. Is there a subset S′ ⊆ S with |S′| ≤ K such that S′ contains
at least one element from each subset in C?

THEOREM 3.4. WCDP is NP-complete.

PROOF. S is the possible led locations in an N1×N2 area (S = L). Create the collection
C of subsets of S using all the a × b OWs. S′ contains the locations of the IR leds that
are placed on the N1 × N2 area satisfying |S′| ≤ K (S′ = L′). Then, having at least one
IR led in each a×b window (each subset in C) is finding the hitting set in this collection.
In WCDP, every subset in the collection C is chosen based on a geometric constraint
of a × b OWs. Such geometric constraints are a natural occurrence of the hitting set
problem and for many geometric range spaces including disks and squares, computing
the hitting set remains NP-complete [Agarwal et al. 2009; Mustafa and Ray 2009;
Ganjugunte 2011; Megiddo and Supowit 1984]. The reduced problem is the restricted
case of WCDP since it only guarantees at least one IR led in each a × b window, where
WCDP requires at least k IR leds in each a × b window. In other words, the hitting
set problem under geometric constraints is equivalent to WCDP(N1, N2, a, b, k, K) for
k = 1. Since an NP-complete problem is reduced to the restricted case of WCDP, WCDP
is also NP-complete.

Minimum hitting set is the optimization version of the hitting set problem and it is
classified as NP-hard [Ausiello et al. 1980].

Definition 3.5 (Minimum Hitting Set). Given a collection C of subsets of a finite set
S, find a minimum-cardinality subset S′ ⊆ S such that S′ contains at least one element
from each subset in C.

By Theorem 3.4, it is obvious to see that WCP is equivalent to the minimum hitting
set problem with geometric constraints and therefore it is also NP-hard. This means
that no polynomial-time algorithm exists to solve WCP. Moreover, we want the vectors
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formed by IR leds to be unique, as discussed in Section 2. This requirement adds
another constraint: All IR-led pairs should have different length-slope values in order
to distinguish them. This additional constraint makes the problem even harder.

Since the WCDP is NP-complete, a given solution to this problem has to be verified
in polynomial time. Consider the case where at least one pair of the IR leds (k = 2, two
IR leds) has to exist in each a × b window. Counting the total number of leds is easy;
however, we need an efficient mechanism to figure out the number of leds in a given a×b
window. Then, verifying the correctness of a given solution is calling this mechanism for
all the a× b windows in the N1 × N2 area. The mechanism requires a matrix structure,
and the verification of the correctness of a solution should take polynomial time.

The basis for the structure comes from set theory. In Figure 5, we have the sets A1,
A2, A3, A4, each covering a specific area of the whole rectangle. Then, the number of
points in the area, A4, is found by the following equation.

A4 = (A1 + A2 + A3 + A4) − [(A1 + A2) + (A1 + A3) − A1] (1)

The first step in finding the number of points in a specified rectangle is to create and
initialize a matrix, MatrixPoints, with the same size as the size of a given solution (the
same number of rows and columns). The existence of a point is represented by a 1 and
nonexistence of a point is represented by a 0 in the matrix. The goal is to determine
how many points there are in an X × Y window area at a given time. We need an
auxiliary matrix M to achieve the goal. Each entry of this matrix is associated with
the number of points in the rectangle defined between (0,0) and the coordinates of the
related entry. Lines 1–6 in Algorithm 1 show how to build the auxiliary matrix. Once
the auxiliary matrix M is constructed, the number of pairs in a specific window can be
determined. Eq. (2) finds the number of points in a window of which the right-bottom
coordinates are i, j, width is X, and height is Y using the matrix M.

A4 = M(i, j) − [M(i, j − Y ) + M(i − X, j)] + M(i − X, j − Y ) (2)

Figure 5 shows an example array and WRC window area A4 inside of our array.
Finally, we derive Algorithm 1 that verifies whether all X×Y windows contain at least
k number of points (IR leds) or not. The complexity of this algorithm is O(mn), where
m and n are the dimensions of the given matrix.

ALGORITHM 1: Verify(MatrixPoints, k, X, Y, RowSize, ColumnSize)
1 M = MatrixPoints;
2 for i = 1 to RowSize do
3 for j = 1 to ColumnSize do
4 M[i, j]+ = M[i − 1, j] + M[i, j − 1] − M[i − 1, j − 1];
5 for i = X to RowSize do
6 for j = Y to ColumnSize do
7 if M[i, j] − M[i, j − Y ] − M[i − X, j] + M[i − X, j − Y ] < k then
8 return NOT VERIFIED;
9 return VERIFIED;

For the array in Figure 5, for example, we need to create a 9 × 9 matrix and fill each
entry of this matrix with the number of points in the rectangle defined between (0,0)
and the coordinates of the related entry. For example, the number of points in the area
of A1 is kept in the third row and fourth column of our matrix, M(3, 4). By using our
matrix, we can easily check the number of points in our observation window as we
show in Eqs. (3) and (4).
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Fig. 5. Finding the number of points in the WRC window.

4. PROPOSED SCHEMES

We propose Costas-based Remove-Slide Linear Programming led placement (CRS-LP),
Metric-based Random led placement (MBR) , and schemes based on linear program-
ming in order to solve the WCP(N1, N2, a, b, k) problem. We start with a Costas-array-
based algorithm since the properties of the Costas arrays match our requirements
exactly in terms of unique slope-and-distance pairs as discussed in Section 4.1. Next,
we propose an intelligent random led placement scheme for comparison purposes. Fi-
nally, we propose linear programming schemes for the optimal solution to the WCP.
The led placements constructed by these schemes can be found at the journal Web
page [Led 2014].

We make use of the following metric for CRSLP and MBR methods.

metric = 2(W0s) + 1(W1s) (5)

In Eq. (5), W0s represents the number of windows having zero leds in it within the
vicinity of an led location. Similarly, W1s represents the number of windows having
one led in it within the vicinity of an led location. The vicinity of an led with (x,y)-
coordinates consists of all the a × b windows in the set �(x,y) (the set of Observation
Windows (OWs) in the vicinity of the location, (x,y)). Each window in the set, �(x,y)
contains the led location (x,y). For instance, in Figure 25(a), the vicinity of the location
(16,13) is depicted for a 30 × 30 grid with 108 (108 = 12 × 9) OWs, each sized 12 × 9.
Since our goal is to guarantee at least two leds in each OW, our metric is dependent
on the number of OWs having only zero and one led. The OWs having greater than or
equal to two leds in it already satisfy our problem, WCP, so we do not consider them
in the metric. Also, since eliminating the OWs having zero leds in it is more important
than eliminating the OWs having one led in it, the coefficients for W0s, and W1s are 2
and 1, respectively, in our metric.

4.1. Costas-Based Remove-Slide Linear Programming Led Placement (CRS-LP)

The mobile robot figures out its position using the IR leds that are attached on the ceil-
ing. During this operation, the number of unique length-slope pairs that are generated
out of the led set is very crucial. We want to have as many unique length-slope pairs
as possible, therefore we start with a Costas array benefiting from its irregularity. The
Costas array is first introduced in Costas [1984]. A Costas array is a two-dimensional
array consisting of blanks and dots where each row and each column exactly has one
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dot in it. Moreover, the pairs generated from the dots have unique length-slope values,
which is exactly what we need for the solution of our problem. The second property
of Costas arrays provides the irregularity that we are looking for. Since the pairs are
unique in terms of length and slope, the mobile element (ME) is able to differentiate all
the pairs and it might calculate its location using this irregularity. Figure 3(a) shows
an example Costas array of 27.

Costas arrays cannot be used directly for our problem. First, a Costas array might
have more than two leds in some OWs. Since it is sufficient to have at least two leds in
OWs, those excess leds are removed from the Costas array with the remove-leds phase
of the CRS-LP algorithm. Second, some OWs might have less than two leds in them.
For those OWs, a slide-leds step followed by the LP step of the CRS-LP algorithm will
be applied.

The third step is the slide-leds step. After removing the extra leds, if any OWs have
less than two leds in them, the IR leds left are slided in order to increase the number
of windows that have at least two IR leds in it.

After the slide step, if there still exist some windows having less than two IR leds in
it, the union of these windows together with the already-existing IR leds in that union
are fed to a linear programming tool (IBM ILOG CPLEX Optimizer is used), which in
turn returns the necessary locations for IR leds, guaranteeing that all the windows will
have at least two IR leds at most. We call this algorithm Costas-Remove-Slide-with-
Linear-Programming (CRS-LP) led placement.

4.1.1. Generating Costas Array. There are systematic constructions for Costas arrays.
These constructions make use of primitive elements of finite fields. We use two con-
struction methods, namely, Welch and Lempel construction methods. The Welch con-
struction method is given in a theorem by L. R. Welch [Golomb 1984] as follows.

THEOREM 4.1 [WELCH]. Let g be a primitive root modulo the prime p. Then the (p −
1)×(p−1) permutation matrix with aij = 1 iff j ≡ gi (mod p), 1 ≤ i ≤ p−1, 1 ≤ j ≤ p−1
is a Costas array.

In Theorem 4.1, g is a primitive root (element) in the finite field GF(p) for prime
p(GF(p) is the field of integers modulo p). g in GF(p) is primitive if the successive
powers of g are equivalent to one (g1, g2, g3, . . . , gp−1 = 1) for all the nonzero elements
of GF(p). For example, four different 10×10 Costas arrays can be generated for p = 11
with primitive elements 2, 6, 7, 8 in the finite field, GF(11).

The Lempel construction method is also given in a theorem by A. Lempel [Golomb
1984] as follows.

THEOREM 4.2 [LEMPEL]. Let α be a primitive element in the field GF(q), for any q > 2.
Then the (q − 2) × (q − 2) symmetric permutation matrix with aij = 1 iff ai + aj = 1 is a
Costas array.

In Theorem 4.2, q is a prime power. For example, four different 9 × 9 Costas arrays
can be generated for q = 11 with primitive elements 2, 6, 7, 8 in the finite field, GF(11).

4.1.2. Removing Leds. After Costas array generation, there might exist some extra
leds which our system does not need. Some OWs might have more than two leds in it.
Therefore, we apply the removing-leds step of the CRS-LP algorithm.

In this step, we make use of Voronoi diagrams, heavily used in computational ge-
ometry. In addition to computer science, Voronoi diagrams are used in applications
from several fields such as physics, biology, archaeology, astronomy, and so on [Okabe
et al. 2000]. Voronoi diagrams are considered antiquity, since they were first used by
Descartes in 1644. The generalization of Voronoi diagrams (d-dimensional case) was
conducted by Georgy Voronoy.
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Informally, a two-dimensional Voronoi diagram is the following. Assuming there is
a set P = {p1, p2, . . . , pn} of n points which are called sites, each point of the plane
containing the point set P is attached to the site closest to it introducing a partition of
the plane. Each site owns the part attached to it.

Formal definition of a Voronoi diagram is the following. Let P = {p1, p2, . . . , pn} be a
set of points in the plane, which are called sites. ν(pi) is the Voronoi cell for pi, and it
contains the set of points q in the plane that are closer to pi than any other site. So, the
Voronoi cell for pi is defined as ν(pi) = {q | |piq| < |pjq|,∀ j 
= i}, where |ab| represents
the distance between points a and b. Finally, when the Voronoi cells are removed from
the plane, the resulting lines and points constitute the Voronoi diagram of the point
set P, Vor(P).

An led is considered as an extra led if the metric Eq. (5) does not change after
the removal of that led. In other words, if the number of OWs having zero or one leds
in the vicinity of the candidate led for removal does not change after we remove the
candidate led, that led is considered as an extra led; see the beginning of the section
for the definition of �vicinity. Intuitively, good candidates for extra leds exist in the
dense parts of the grid. In order to find a good candidate led for removal, we make
use of the Voronoi diagram of the points resulting from the Costas array generation,
Section 4.1.1. We pick the led with the smallest Voronoi cell as the candidate led
for removal, since the points in denser parts of the grid form smaller Voronoi cells
compared to the sparse parts of the grid. If the candidate led is considered as an extra
led based on the metric, the extra led is removed. Then, a new Voronoi diagram of the
points left is constructed in order to find the next candidate led for removal. If the
candidate led is not considered as an extra led based on the metric (the metric changes
after the removal of the candidate point), we continue by picking the site having the
next smallest Voronoi cell as a candidate for removal. The algorithm terminates when
no extra leds are found after traversing all the cells of a Voronoi diagram. Appendix A
illustrates an example of the removing-leds step.

Algorithm 2 shows the details of the algorithm. The inputs are M, X, Y , RowSize,
and ColumnSize. M is the two-dimensional bit-array where the locations of the leds
resulting from the Costas generation step are set to 1, and other locations are set to
0. X and Y represent the OW’s size. RowSize and ColumnSize represent the size of
the whole grid. Actually, since the Costas array is an |M| × |M| array where |M| is the
number of points in M, RowSize and ColumnSize are equal to |M|, |M| = RowSize =
ColumnSize.

ALGORITHM 2: RemoveLeds(M, X, Y, RowSize, ColumnSize)
// M holds the leds’ locations. 2d bit array.

1 repeat
2 VorM = ConstructVoronoi(M);
3 minPQ = ConstructPriorityQueue(VorM);
4 keepRemoving = false;
5 while minPQ.size() > 0 do
6 smallestface = minPQ.extractMin();
7 CandidateLed = smallestface.site();
8 if !DoesMetricChange(CandidateLed, M, X, Y, RowSize, ColumnSize) then
9 M.remove(CandidateLed);

10 keepRemoving = true;
11 break;
12 until keepRemoving == false;
13 return M;
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In each iteration of the outer loop of Algorithm 2, if there exists an extra led, it
is found and removed. When there are no extra leds left to be removed, the algorithm
terminates. In order to find an extra led, we first construct the Voronoi diagram, VorM, of
the points in M. Using VorM, the min-priority queue, minPQ, with the area of each cell
of the Voronoi diagram as key, is created in order to find a good candidate led. The first
candidate led is the point having the Voronoi cell with the smallest area, lines 6 and 7.
The test for the removal of the candidate led is done in function DoesMetricChange.
If the metric Eq. (5) does not change after the removal of the candidate led, then the
candidate led is an extra led and the function returns false. The extra led is removed
from M in line 9. The variable keepRemoving holds the decision about termination. It
is set to true in line 10, since the algorithm will continue with the next iteration of the
outer loop that finds the next led to remove. If the candidate led is not an extra led, then
the function DoesMetricChange returns true and we continue with the next iteration
of the inner loop. The second candidate led is the point having the Voronoi cell with
the next smallest area, lines 6 and 7. The search continues until the inner loop finds
an extra led. When the inner loop cannot find an extra led, the value of the variable
keepRemoving remains false and the algorithm terminates, guaranteeing that all the
leds left in M are required for our system.

The running-time complexity of the remove-leds step of CRS-LP is the following.
The outer loop iterates the number of removed leds, |Mremoved|, times. Constructing
the Voronoi diagram takes O(|M|lg|M|) time. Constructing the priority queue takes
O(|M|). |M| is the number of leds in the array, M. The inner loop iterates O(|M|)
times in the worst case. The priority queue operation extractMin takes O(lg|M|) and
the function DoesMetricChange takes O(RowSize×ColumnSize). Therefore, within the
outer loop, the runtime of the function DoesMetricChange is O(RowSize×ColumnSize×
|M| dominating the overall runtime. The total worst-case running time of the algorithm
is O(|Mremoved| × (|M|lg|M| + |M| + |M|(lg|M| + (RowSize × ColumnSize)))). Since |M| =
RowSize = ColumnSize for a Costas array having |M| points in it, the worst-case
running time is O(|Mremoved||M|3) where |M| represents the number of leds in the
Costas array generated in the Costas-array-generation step, Section 4.1.1.

4.1.3. Sliding Leds. After the removing-leds step, if there still exist some OW(s) having
0 or 1 leds in it, the sliding-leds phase of the CRS-LP algorithm is applied. The goal
of this phase is to eliminate the OWs having 0 or 1 led in them without adding any
leds to the led set constructed through generating-Costas-array and removing-leds
phases.

We continue with the led set found in the removing-leds phase. First, the union of the
OWs having 0 or 1 leds in them is found. Then, using the union, some candidate leds
(if there are any) to slide are identified. The leds which are not involved in the union
and which are on the border of the union are considered as candidate leds. Once the
candidate leds are found, they are slided towards the union in order to reduce the
number of the OWs having 0 or 1 led.

A candidate led has the capability of sliding to one of its neighbor locations as
Figures 6(a) through 6(f) depict. In the figures, shaded cells are the elements of the
union of the OWs having 0 or 1 led in them. For a candidate led to slide successfully, the
metric computed after sliding should be less than the metric computed before sliding
(see Eq. (5) for the metric). In other words, for a successful sliding, the metric should
improve, resulting in less number of OWs having 0 or 1 leds in them.

For each candidate led, possible sliding locations are found. Assuming the metric
improves for some possible sliding locations, the next step is picking up the best location
among these possible ones for each candidate led. For each possible location, the number
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Fig. 6. Some possible sliding movements.

of unique slope-length pairs is calculated as if the led is moved to that location. Then,
the location having the maximum number of unique slope-length pairs is picked as the
destination location and the led is moved to its new location.

There are two different sliding methods. In sliding method 1, a candidate led is moved
to a sliding location only if the slope-length constraint is preserved. Since the Costas
arrays have the unique slope-length property and the removing-leds phase preserves
the property, the number of pairs is actually equal to the number of unique slope-length
pairs. So in method 1, an led is allowed to slide only if the number of unique slope-length
pairs does not change after the slide step. In sliding method 2, the sliding location that
has the greatest number of unique slope-length pairs is picked without considering the
slope-length constraint. For large grids, method 1 has no effect on the led set, since
preserving the slope-length property and covering a larger region at the same time is
not trivial without adding extra leds. Method 2 eliminates some of the OWs having
less than two leds for large grids. However, the resulting led set does not preserve the
slope-length property as the downside of method 2.

After all the candidate leds are processed, the union of the OWs having 0 or 1 led is
computed again to see if any one of the candidate leds is moved to a new location, and
the previous steps are repeated. If none of the candidate leds can be slided, or if there
are no OWs having 0 or 1 led in them, the algorithm terminates. Appendix B provides
an example of the sliding-leds step.

Algorithm 3 contains the details of the sliding-leds step. The running-time complex-
ity of the sliding-leds phase of the CRS-LP algorithm is the following. The function
findUnionOWs, line 2, first finds the OWs having 0 or 1 led. Finding those OWs takes

ALGORITHM 3: SlideLeds(M, X, Y, RowSize, ColumnSize, methodType)
// M holds the leds’ locations. 2d bit array.

1 repeat
2 union = findUnionOWs(M, X, Y, RowSize, ColumnSize);
3 candidateLeds = findCandidates(union, M);
4 if candidateLeds.size()==0 then
5 break;
6 keepSliding = false;
7 foreach candidate in candidateLeds do
8 slidingLocations = findSlidingLocations(union, candidate);
9 foreach location in slidingLocations do

10 if !DoesMetricImprove(candidate, location, M) then
11 slidingLocations.remove(location);
12 if slidingLocations.size() > 0 then
13 bestLocation = getBestLocation(slidingLocations, methodType);
14 slide(candidate, bestLocation, M);
15 keepSliding = true;
16 until keepSliding == false;
17 return M;
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O(RowSize × ColumnSize) time in the worst case. The union of two polygons P1, and
P2 can be found in O(vlogv + klogv) time where v = v1 + v2, v1 is the number of vertices
P1 has, v2 is the number of vertices P2 has, and k is the complexity of the union of P1
and P2 using the map overlay algorithm from computational geometry. Let the num-
ber of OWs having less than two leds be Now. Assuming that RowSize ∈ O(n) and
ColumnSize ∈ O(n), v and k is O(n + n) = O(n) in the worst case. So, the complexity
of finding the union of two polygons is O(nlogn + nlogn) = O(nlogn). There are Now

OWs to be united. Since Now is RowSize × ColumnSize, Now ∈ O(n2). As a result, the
complexity of finding the union of all OWs is O(n3logn) in the worst case. The total run-
time of the function findUnionOWs is O(RowSize × ColumnSize) + O(n3logn), which
is equivalent to O(n2) + O(n3logn) assuming RowSize, ColumnSize ∈ O(n) (the first
term is the complexity of finding OWs having less than two leds). Finally, the runtime
of the function findUnionOWs is O(n3logn). Using the union and the led locations M,
the candidate leds can be found in O(RowSize + ColumnSize) = O(n + n) = O(n)
time, line 3. The upper bound for the number of candidate leds is O(|M|), where
|M| is the number of leds. Therefore, the first inner for-loop, line 7 to line 15, it-
erates O(|M|) times. For each candidate led, corresponding sliding locations can be
found in constant time O(c1), where c1 is a constant, line 8. The for-loop, line 9 to
line 11, iterates the number of sliding locations times which is a constant, c2. The
function DoesMetricImprove runs in O(RowSize × ColumnSize) time. The function
getBestLocation in Algorithm 3, line 13, returns the best location for the led to slide
according to the sliding method type—method 1 or method 2—given as the input. It
first finds the number of unique slope-length pairs for each sliding location, so its
runtime is dominated by finding the number of unique slope-length pairs, which is
O(|M|2log(|M|)). The outer loop iterates τ times until the algorithm terminates. Recall
that if none of the candidate leds can be slided, or if there are no OWs having 0 or
1 led in them, the algorithm terminates. As a result, the running time of the sliding-
leds phase is O(τ (n3logn + n + c1|M| + c2|M||M|2log(|M|))) which can be rewritten as
O(τn3logn).

The sliding-leds phase of the CRS-LP algorithm cannot eliminate all OWs having 0
or 1 led all the time, especially for large grids. Therefore, we use linear programming
if there still exist OWs having less than two leds after the sliding-leds phase.

4.1.4. Linear Programming (LP). We conclude our CRSLP algorithm with the linear pro-
gramming (LP) step. Recall that we started with a Costas array, then removed the
unnecessary leds. If there still exist OWs having less than two leds in them, we pro-
ceed with the sliding step (sliding method 1 and 2). After the sliding step, a linear
programming step is run to make the OWs have at least two leds in them if some of
the OWs still have less than two leds in them. Using this approach, we can reduce a
large number of constraints and variables for linear programming.

Assuming the Wii coverage problem could not be solved with the previous steps
(Costas-remove-slide), we apply the LP step. At this point, we have OWs having less
than two leds in them. The goal of this step is eliminating all those OWs having less
than two leds by adding leds on proper locations. In order to achieve this aim, we apply
the basic linear programming formulation as discussed in Section 4.3.2 on the union
of the OWs having less than two leds in them by feeding the locations of the leds that
already reside in the union.

Let the set P contain the variables in the union of OWs having less than two leds,
varij ∈ P. varij represents the cell located at the ith column and jth row in the grid, and
(i, j) is a location in the union. Moreover, an OW has the size a × b(4l × 3l). The LP
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Fig. 7. Illustration of CRS-LP algorithm where n = 72.

formulation for this step is the following.

Minimize:
∑

varij ;varij ∈ {0, 1}
,∀varij ∈ P

Subject To:
m+a−1∑

i=m

n+b−1∑
j=n

varij ≥ k ;∀m,∀n(m,n) is the upper left position of an OW

having less than 2 leds in the union.
varij = 1 ;if the location (i,j) had led from the previous steps

of CRSLP algorithm. (6)

We show an example for a grid of 72 × 72 using 12 × 9 OWs. We start by a Costas
array of 72 which is constructed using the Welch method as depicted in Figure 7(a).
After the remove step is conducted, two leds located at (72, 1) and (64, 2) are found
unnecessary, and removed as shown in Figure 7(b). (In Figure 7(a), the two void circles
represent the leds removed by the remove step.) The thick lines in Figures 7(a) and 7(b)
are the boundaries of the union of OWs having less than two leds. At this point, 52%
of the OWs have less than two leds. Then, we apply one of the sliding methods. Sliding
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method 1 preserves the slope-length constraint. However, method 1 cannot find any
leds to slide in order to eliminate OWs having less than two leds. Let’s apply sliding
method 2. Figure 7(c) demonstrates led positions and the union of the OWs having less
than two leds after the sliding method is applied. At this point, 20% of the all OWs
have less than two leds. Figure 7(d) shows the final configuration after LP is conducted
according to the formulation (6) (void circles represent the leds added by the LP steps;
23 leds are added by the LP algorithm). All OWs contain two leds or more than two
leds in this final arrangement. There are 117 leds in the final led set. The number of all
pairs is 6786, and 3939 of these pairs are distinct. Therefore, 3939

6786 = 0.58 of the pairs
have unique slope-length values. If only the pairs of which lengths fit in a 12 × 9 OW
are considered, then the number of these pairs is 603, and 213 of them are distinct,
making 213

603 = 0.35 of these pairs distinct.

4.2. Metric-Based Random Led Placement (MBR)

We propose an intelligent random led placement algorithm for comparison purposes.
The scheme is based on a metric that we will discuss shortly, and the quality of the
outcome depends on two parameters, a threshold constant and a repetition value. The
placement of the IR leds in random locations is based on the metric Eq. (5).

Algorithm 4 shows the details of MBR led placement. The inputs are k, X and Y rep-
resenting the Observation Window (OW) size, RowSize and ColumnSize representing
the whole grid, thresConst, and repetition. When the goal is to guarantee at least two
IR leds in each OW, the value of k is 2. The arguments thresConst and repetition are
used to generate feasible led placements. In the end, the algorithm returns a set of led
locations M guaranteeing at least two IR leds in each OW.

ALGORITHM 4: MBR(k = 2, X, Y, RowSize, ColumnSize, thresConst, repetition)
1 threshold = threshold original = X × Y;
2 repetitionCount = 0;
3 M[][]={}; // M holds the leds’ locations. 2d bit array.
4 while 1 do
5 ledLocation = randomLed();
6 metric prev = computeMetric(M, ledLocation);
7 M.setLed(ledLocation); // set led location to 1 in 2d bit array
8 metric current = computeMetric(M, ledLocation);
9 if metric prev − metric current ≥ threshold then

// led added to M.
10 if !has0s1s(M) then

// termination condition
11 break;
12 repetitionCount = 0;
13 threshold = threshold original;
14 else

// do not add the led
15 M.resetLed(ledLocation); // set led location to 0 in 2d bit array
16 repetitionCount++;
17 if repetitionCount ≥ repetition then
18 threshold = threshold × thresConst;
19 repetitionCount = 0;
20 return M;

The basis of the MBR algorithm is the infinite loop starting with line 4. In each
iteration, an led location is randomly chosen using the function randomLed. Then,
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Fig. 8. Threshold constant and number of repetition comparisons for metric-based random led placement.
12 × 9 windows.

metric prev, the metric for that location without the led in the location, is computed.
With M.setLed(ledLocation), line 7, an led with ledLocation is added to M. The metric
for the location, ledLocation, is computed once more with the led added this time, and it
is set to metric current. The metric difference between metric prev and metric current
gives an idea on the feasibility of the random location, ledLocation. The higher the
metric difference, the more feasible the led location, since having a low number of
OWs having one or zero leds results in low metric values. We define a threshold value
for this issue. threshold is set to X × Y in line 1. This value is the highest value
the metric difference can hold. If the metric difference is higher than the threshold
value, then the led is added to the set M, line 9. The threshold value is updated
throughout the program lifetime according to the algorithm argument thresConst,
where 0 < thresConst < 1. The argument repetition binds the number of iterations
that use a specific threshold value. After the led is added, the helper function, line 10,
has0s1s decides if the algorithm should terminate or not. The function returns true if M
has any OWs having one or zero leds in it. It returns false, otherwise. So, if the function
has0s1s returns false, this means that all the OWs have more than or equal to two leds
in it, and the program terminates. If not, we reset the threshold value to its original
value, the repetitionCount (counts the number of iterations that a specific threshold
value is used) to 0, and continue with the next iteration. If the metric difference is
less than the threshold value, line 9, then the led will not be added to the set M and
repetitionCount is incremented. Line 17 decides if the same threshold value is used
for the next iteration. If repetitionCount is greater than a user-specified repetition
value, then the threshold value is updated according to thresConst (user specified), and
repetitionCount is reset.

The running-time complexity of the MBR led placement algorithm is
O(RepT hresConst × RowSize × ColumnSize × RowSize × ColumnSize + |Mf inal| ×
RowSize × ColumnSize). There are at most RowSize × ColumnSize different
led locations that might be considered in the grid, and computeMetric takes
O(RowSize × ColumnSize) time. Also, the repetitions of thresholds add another fac-
tor RepT hresConst which is user dependent. These three runtimes constitute the first
term in the running-time complexity. The second term comes from the function has0s1s.
Its complexity is O(RowSize × ColumnSize), and it is computed the number of leds in
the final set, |Mf inal|, many times.

Figures 8(a) and 8(b) show the effect of thresConst and repetition on the number
of leds and normalized distinct slope-length values (distinct slope-length pairs/all
pairs), respectively, for n × n grids with 12 × 9 OWs where n = [21, 22, 27, 28,
35, 36, 39, 40, 42, 45, 46, 51, 52]. In the figures, thc represents thresConst and r rep-
resents repetition. The higher the thresConst and repetition values, the better the led
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placement, as the figures suggest. When thresConst is high, the algorithm is more likely
to catch a good led location with a good metric difference because the decreasing rate of
the variable threshold is low. When repetition is high, the algorithm is again more likely
to find a good led location with a good metric difference because the algorithm runs
with the same higher threshold value in a greater number of iterations. Appendix C
provides an example of the MBR algorithm with the thresConst and repetition values
of 0.9 and 100, respectively.

4.3. Linear-Programming-Based Schemes

Linear programming (LP) can be used to solve WCP(N1, N2, a, b, k), and optimal
solutions for small coverage areas are found using the LP techniques. A linear pro-
gramming problem might be defined as the problem of maximizing or minimizing a
linear function subject to linear constraints. For WCP, we consider the ceiling as an
N1 × N2 grid and xij represents the cell located at the ith column and jth row in the
grid. The OW will have the size a×b (4l ×3l), and the linear constraints will be formed
according to the vertical and horizontal movements of the mobile element. We have
four types of formulations: concrete integer linear programming (CILP), basic integer
linear programming (BILP), and linear programming with row-column constraints and
incremental linear programming.

4.3.1. Concrete Integer-Linear-Programming (CILP) Formulation. This method finds the opti-
mal solutions for the WCP. The binary-linear-programming formulation for our prob-
lem, Wii Coverage Problem [WCP(N1, N2, a, b, k)], is the following.

Minimize:
N1∑

i=1

N2∑
j=1

xij ;xij ∈ {0, 1}

Subject To:
m+a−1∑

i=m

n+b−1∑
j=n

xij ≥ k ;∀m, 1 ≤ m ≤ N1 − a + 1

,∀n, 1 ≤ n ≤ N2 − b + 1
xij + x(i+u)( j+v) + xkl + x(k+u)(l+v) ≤ 3 ;0 ≤ u ≤ N1, 0 ≤ v ≤ N2

,1 ≤ i ≤ N1, 0 ≤ j ≤ N2

,1 ≤ k ≤ N1, 0 ≤ l ≤ N2

,k + u ≤ N1, l + v ≤ N2

,i + u ≤ N1, j + v ≤ N2 (7)

In linear-programming formulation (7), xij represents the cell located at the ith col-
umn and jth row in the grid, and its value represents the existence (1) or nonex-
istence (0) of an IR led. Our goal is minimizing the number of the IR leds on the
ceiling. There are N1 × N2 variables in the linear programming formulation. The
first set of constraints in Eq. (7),

∑m+a−1
i=m

∑n+b−1
j=n xij ≥ k, is the window constraint

where each a × b overlapping subrectangle of the N1 × N2 grid contains at least
k leds. Each of these subrectangles should contain at least k leds. This introduces
(N1 −a+1)× (N2 −b+1) ∈ O(N1 × N2) many constraints. The second set of constraints
in Eq. (7), xij + x(i+u)( j+v) + xkl + x(k+u)(l+v) ≤ 3, is the slope-length constraint. It says
that, if an led pair having the endpoints (i, j) and (i +u, j +v) takes place, then another
pair having endpoints (k, l) and (k + u, l + v) is not allowed in order to preserve the
slope-length constraint. Preserving unique slope-length pairs requires O(N1

3)(N2
3)

many constraints, since there is one constraint for each set of integers i, j, k, l, u, v. Due
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Fig. 9.

to this high number of constraints, we have results up to only 32 × 32 grids for 12 × 9
observation windows (the problems were run on Sun Sparc Enterprise T5440 server
which has 256GB memory with 4GB FB-DIMMs. The bottleneck is on the memory).
Notice that the solutions of the concrete LP formulation are the optimal solutions for
our problem. Figure 9(a) shows the optimal solution for 32 × 32 grids for 12 × 9 win-
dows. Moreover, Figure 9(b) shows the number of leds used as the grid size increases.
All pairs are distinct in terms of slope and distance when this scheme is used.

4.3.2. Basic Integer-Linear-Programming (BILP) Formulation. The concrete integer-linear-
programming formulation introduces too many constraints, so it is not practical to
use for big grids. Therefore, we remove the slope-length constraint to get rid of the
huge number of constraints caused by the slope-length constraint. Then, the basic
linear-programming formulation is the following.

Minimize:
N1∑

i=1

N2∑
j=1

xij ;xij ∈ {0, 1}

Subject To:
m+a−1∑

i=m

n+b−1∑
j=n

xij ≥ k ;∀m, 1 ≤ m ≤ N1 − a + 1

,∀n, 1 ≤ n ≤ N2 − b + 1 (8)

For the formulation (8), the number of constraints is (N1 − a + 1) × (N2 − b + 1) ∈
O(N1 N2), assuming a and b are constants. Similarly, the number of variables is N1 ×
N2 ∈ O(N1 N2).

Basic integer-linear-programming solutions give a lower bound on the number of
required leds for our system. Figure 10(a) shows the number of leds used as the grid size
increases. We define two vector types: the global vector can have any size as long as the
grid size allows, and the local vector is a vector that can fit in an a× b OW window. The
definition of normalization in this context is the following. The value found by dividing
the distinct global vectors by all of the global vectors that can be generated using
the leds placed on the grid is called global normalization. Moreover, the value found
by dividing the distinct local vectors by all of the local vectors that can be generated
using the leds placed on the grid is called local normalization. Figure 10(b) shows
the quality of the leds placement for the basic integer-linear-programming method
using 12 × 9 OWs for normalizationglobal. The quality in this context is defined as the
normalized slope-length uniqueness. Figure 10(c) shows the normalizationlocal for BILP.
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Fig. 10. Basic Integer Linear Programming (BILP) with 12 × 9 OW.

Fig. 11. Integer linear programming with row-column constraints for 12 × 9 OWs.

4.3.3. Integer Linear Programming with Row-Column Constraint. Our aim is having unique
slope-length pairs in addition to the constraint where each window contains at least
k leds in it. In order to increase the number of unique slope-length pairs, we add the
constraint where each row and each column in the grid holds at most one IR led to our
basic LP formulation. The new LP formulation with extra constraints is the following.

Minimize:
N1∑

i=1

N2∑
j=1

xij ;xij ∈ {0, 1}

Subject To:
m+a−1∑

i=m

n+b−1∑
j=n

xij ≥ k ;∀m, 1 ≤ m ≤ N1 − a + 1

,∀n, 1 ≤ n ≤ N2 − b + 1
N1∑

i=1

xij ≤ 1 ;∀ j, 1 ≤ j ≤ N2

N2∑
j=1

xij ≤ 1 ;∀i, 1 ≤ i ≤ N1 (9)

The row-column constraint introduces an extra N1 × N2 constraints, resulting in
infeasible solutions for large N1 and N2. Moreover, the LP solver runs longer in order
to meet the new constraints. We have the solutions for grids of size up to 54 × 54 for
12 × 9 OWs as depicted in Figures 11(a), 11(b), and 11(c).

4.3.4. Incremental Linear Programming. In this method, instead of covering the whole
N1 × N2 grid at once, we cover the grid incrementally as follows. A solution to our
problem for some N1 × N2 grid is chosen as the base solution. This solution can be
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found by using any of the methods we propose. Then, the base solution to N1 × N2 is
extended by adding new rows and columns satisfying the required constraints using
binary integer linear programming. After K many row-column extensions, we replace
the base solution with the latest solution we have found, and continue finding new
solutions in this manner. Since we make use of the previous solutions, the incremental
linear programming method requires at least an order of N fewer constraints and
variables than the other linear programming methods, as shown in Table I. As a result,
this method is faster and scalable since it can be used to find solutions for large N1 and
N2 values. The formulation for the incremental LP method is presented as formula (10)
with a × b OWs. (The base solution is a solution to an N1 × N2 grid.)

Minimize:
N1+k∑

i=N1−a+2

N2+k∑
j=1

xij +
N1−a+1∑

i=1

N2+k∑
N2−b+2

xij ;xij ∈ {0, 1}

Subject To:
m+a−1∑

i=m

n+b−1∑
j=n

xij ≥ k ;∀m, N1 − a + 2 ≤ m ≤ N1 + k − a − 1

,∀n, 1 ≤ n ≤ N2 + k − b − 1
m+a−1∑

i=m

n+b−1∑
j=n

xij ≥ k ;∀m, 1 ≤ m ≤ N1 − a + 1

,∀n, N2 − b + 2 ≤ n ≤ N2 + k − b − 1
x = 1 ;x ∈ |SLIIR| (10)

In LP formula (10), SLIIR is the set of led locations from the base solution. The
set SLIIR does not contain all the leds from the base solution, but only the leds in
the incremental region. The leds in the gray area in Figure 12(a) are the elements of
the set SLIIR. The incremental region is the region containing the variables which we
minimize in the incremental LP formula (10).

Once the linear programming part is run and new leds are found, all the leds from
the base solution and the new leds from the LP run are combined to form a new solution
with higher N1 and N2 values.

Figures 12(a) through 12(g) depict how the incremental LP method works when the
CILP (31×31) solution is chosen as the initial base solution for 12×9 OWs for the first
K extensions. Each of the solutions 32 × 32 through 37 × 37 is found using the solution
31 × 31 as the base solution. Since K = 6, for this example, the most recent solution,
37 × 37, is picked as the next base solution. Figures 13(a) through 13(c) show the
subsequent base solutions. For example, in Figure 13(a), the solution for 37 × 37 is
the base solution and the solution for 43 × 43 is found using 37 × 37. Since K = 6, the
solution for 43 × 43 will be the next base solution as used in Figure 13(b).

Picking the K value is crucial for the performance of the incremental LP, regardless
of the type of method used for the initial base solution. When K is a multiple of a (a
is the size of the horizontal edge of the a × b OWs) or greater than a, the performance
mimics the performance of BILP (low number of leds, low normalization values), which
is not favorable. When a fraction of a is chosen as K—such as K = 6 for 12 × 9 OWs—,
the LP run is exposed to a distortion and the normalization values get better.

Since the incremental LP method requires fewer constraints and is more scalable
compared to the other LP methods we propose, the incremental LP method could also
be applied to the final solution that can be found using the CRSLP method, Section 4.1,
in order to achieve solutions for very high N1 × N2 grids.
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Fig. 12. Illustration incremental LP method on CILP (31 × 31) as the initial base solution, 12 × 9 OWs.

Scalability issues. Although integer-linear-programming formulations are simple, in-
teger linear programming is NP-hard. Therefore, the LP approaches CILP and ILProwcol
do not work for large N1 and N2 values. Moreover, the number of constraints for our
problem increases exponentially as N1, and N2 increase linearly, causing scalability
problems.

Table I shows the required number of constraints and variables for the integer linear-
programming formulas proposed.

5. COMPARISON OF THE PROPOSED SCHEMES

In this section, we compare the methods that find led placements for the WCP. Table II
compares the methods presented by the number of leds used and normalized values
found by dividing the distinct vectors (pairs) by all of the vectors (pairs) that can be
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Fig. 13. Incremental LP method on CILP (31 × 31), base solutions (12 × 9 OWs).

Table I. Comparison of the Number of Constraints and Variables among Integer-Linear-Programming Formulas

Method Number of Constraints Number of Variables
CILP (N1 − a + 1)(N2 − b + 1) + �(N1

3 N2
3) N1 × N2

ILProwcol (N1 − a + 1)(N2 − b + 1) + N1 + N2 N1 × N2

BILP (N1 − a + 1)(N2 − b + 1) N1 × N2

Incremental LP k(N1 + N2 + 2k − a − b − 1) + |SLIIR| (N2 + k)(|N2 − N1| + k + a − 1)
+ (N1 − a + 1)(|N2 − N1| + k + b − 1)

generated using the leds placed on an N × N grid with N values up to 54. In the table,
global normalization values are represented as NormG and local normalization values
are represented as NormL. The methods on the table use 12 × 9 OWs. The method
incremental LP uses the base solution generated by the method BILP, where n = 23
and the value of k is 6. Moreover, CRSLP uses the sliding method 2.

The method CILP requires a huge number of linear programming constraints as
the coverage area gets larger. As a result, we have the perfect solutions up to n = 32
for 12 × 9 OWs. Therefore, CILP is the best method for grids where n ≤ 32. BILP
is a method that gives the lower bound on the number of leds required, however, it
does not provide good solutions. ILProwcol produces good results, but has limitations on
guaranteeing the constraints for large grids, as we discussed in Section 6. We have
the results generated by ILProwcol up to n = 54 using 12 × 9 OWs. Incremental LP
is a fast technique producing good results, and can be used for large grids. However,
incremental LP requires the greatest number of leds among all LP-based methods.
Figures 14(a), 14(b), and 14(c) compare all the LP-based schemes in terms of number
of leds used, NormG, and NormL, respectively, for n values up to 150.

The intelligent random led placing algorithm, MBR, produces solutions almost as
good as CRS-LP. However, MBR requires the greatest number of leds among all pro-
posed methods. CRS-LP is the method producing good results without having to have
large memory requirements. Moreover, for large areas, CRS-LP is the most promising
one since it produces the highest normalization values and uses the lowest number
of leds (except BILP, whose solutions are the lower bound on the number of leds re-
quired). Some entries in Table II are missing for CRS-LP. The reason is that the Costas
construction methods, Lempel and Welch, cannot produce Costas arrays for all n val-
ues. However, any other Costas constructions can be used for the missing entries.
Figures 15(a), 15(b), and 15(c) compare the methods in terms of number of leds used,
NormG, and NormL, respectively, for n values up to 150.
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Fig. 14. Comparison of integer-linear-programming solutions (zoomed in).

6. THEORETICAL RESULTS ON THE SATISFIABILITY OF COSTAS
AND WINDOW CONSTRAINTS

We provide theoretical analysis on the applicability of three properties in terms of the
size of the grid. Two of these properties are the Costas array properties: row-column
constraint (each row and column has one led) and unique slope-length constraint (all the
led pairs have unique slope-length values). The third property is the window constraint
where each OW has at least k IR leds in it. There are limitations on satisfying these
properties simultaneously, and it is not possible to satisfy all three properties at the
same time for all grid sizes. In order to prove it, we change the WCP slightly. Instead of
guaranteeing k leds in each OW, k leds are guaranteed in nonoverlapping OWs. We call
this problem WCPnon−overlapping. It’s trivial to observe that the number of leds required
for WCP is more than the number of leds required for WCPnon−overlapping.

THEOREM 6.1. For an N1 × N2 grid and a × b nonoverlapping windows having k
leds in each window, it is not possible to satisfy both the window constraint and the
row-column constraint if  N1

a � × k > b , or  N2
b � × k > a.

PROOF. Proof by contradiction. Assume that for an N1 × N2 grid and a × b nonover-
lapping windows having k leds in each window, it is possible to satisfy both the window
constraint and the row-column constraint if  N1

a � × k > b. For the first b rows with
complete OWs spanning N1 columns, the number of leds is at least  N1

a � × k resulting
from the windows constraint. The number of leds for the first b rows is at most b ac-
cording to the row-column constraint. If  N1

a � × k > b, at least one of the b rows has
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Fig. 15. MBR, CRSLP (sliding method 2), BILP comparison, 12×9 OWs. n values range up to 150.

more than one led in it, contradicting the row-column constraint. Similarly, assume
that it is possible to satisfy both the window constraint and the row-column constraint
for the first a columns with complete OWs spanning N2 rows if  N2

b � × k > a. Then,
if  N2

b � × k > a, one of the columns has more than one led in it, contradicting the
row-column constraint.

Since both the window and the row-column constraints cannot be satisfied at the
same time for all N1 × N2 grids, we remove the row-column constraint and keep the
windows constraint because the windows constraint is the heart of our methods for
location estimation. Now, we will investigate whether both the window constraint and
the unique slope-length constraints hold for all grid sizes or not.

THEOREM 6.2. For an N1 × N2 grid and a× b nonoverlapping windows having k leds
in each window, it is not possible to satisfy both the window constraint and the unique
slope-length constraint if  N1

a �( N2
b � − 1)k2 > (2a − 1)(2b − 1).

PROOF. Proof by contradiction. Assume that, for an N1×N2 grid and a×b nonoverlap-
ping windows (having k leds in each window), it is possible to satisfy both the window
constraint and the unique slope-length constraint if  N1

a �( N2
b �−1)k2 > (2a−1)(2b−1).

A specific case regarding two consecutive vertical windows is considered. Figure 16
depicts the consecutive vertical windows. The ends of the pairs considered should be
in different windows, as the figure shows. The total number of led pairs correspond-
ing to the vertical consecutive OWs for an N1 × N2 grid is found as follows. Both two
consecutive nonoverlapping vertical windows can be paired as shown in Figure 16. An
ellipse in the figure represents a window pair. A magnified window pair is depicted to
the right of the figure. Each window pair contributes k2 led pairs to the total number of
pairs. There are  N1

a �( N2
b � − 1) vertical consecutive window pairs. Therefore, the total
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Fig. 16. Total number of unique slope-length pairs using two consecutive vertical windows.

number of pairs corresponding to the vertical consecutive OWs for an N1 × N2 grid and
a × b nonoverlapping windows having k leds in each window is  N1

a �( N2
b � − 1)k2.

The maximum number of unique slope-length pairs between two consecutive vertical
paired windows is computed as follows. Let Rv(a, b) represent the maximum number
of unique slope-length pairs between two consecutive nonoverlapping vertical a × b
windows. Then, Rv(a, b) can be computed iteratively or recursively. For the iterative
version, Rv(a, b) is computed as Rv(a, b) = b(a + ∑a−1

i=1 1) + (b − 1)(a + ∑a−1
i=1 1) = (2a −

1)(2b − 1).
If  N1

a �( N2
b �−1)k2 > (2a−1)(2b−1), then there have to be led pairs having the same

slope-distance values, contradicting the unique slope-distance constraint.

For 12×9 windows and k = 2, the relation  N1
a �( N2

b �−1)k2 > (2a−1)(2b−1) computes
to N1 N2 > 10557  N1

12 �( N2
9 �−1) > 97.75 . Therefore, grids of size of 108×108 and larger

cannot have unique slope-length pairs considering vertical consecutive OW pairs. The
bound we found is not the lower bound and it can be tightened further considering
other arrangements such as nonconsecutive vertical OW pairs, and so on. Moreover, as
the grid size increases, the normalization values decrease, since the number of unique
led pairs also decreases.

We also investigate the effect of the density of the IR leds placed in an N1 × N2 grid
on the uniqueness of the led pairs. Assuming m leds are used to cover an N1 × N2
grid, it is not possible that all pairs can be unique when the value of m is large. First,
the possible number of distinct vectors in an N1 × N2 grid, DVN1 N2 , needs to be found.
Considering i × j axis-aligned rectangles, there are three different orientations of axis-
aligned rectangles that can be generated using i and j unit line segments for the cases
where i 
= 0 ∧ j 
= 0, (i = 0 ∧ j 
= 0 ) ∨ (i 
= 0 ∧ j = 0 ), and i = 0 ∧ j = 0. Notice that
each diagonal of the rectangles can be thought as a distinct vector. Let p(i, j) be the
number of unique vectors for an axis-aligned rectangle whose x and y components are
either i or j, and 1 < i < max(N1, N2) , 1 < j < min(N1, N2) are integers. Then p(i, j) is
the following.

p(i, j) =
⎧⎨
⎩

2 if i 
= 0 ∧ j 
= 0
1 if (i = 0 ∧ j 
= 0) ∨ (i 
= 0 ∧ j = 0)
0 if i = 0 ∧ j = 0

Using p(i, j), the number of distinct vectors in an N1 × N2 grid (DVN1 N2 ) is found as
DVN1 N2 = ∑N1−1

i=0
∑N2−1

j=0 p(i, j) = 2N1 N2 − N1 − N2.
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Fig. 17.

THEOREM 6.3. For an N1 × N2 grid and m leds deployed in the grid, it is not possible
to satisfy the unique slope-length constraint if 4N1 N2 − 2N1 − 2N2 < m(m− 1).

PROOF. Proof by contradiction. Assume that, for an N1 × N2 grid and m leds deployed
in the grid, it is possible to satisfy the unique slope-length constraint if 2N1 N2 − N1 −
N2 <

(m
2

)
. The maximum number of distinct led pairs in an N1 × N2 grid is 2N1N2 − N1 −

N2. Moreover, m leds can generate
(m

2

)
many led pairs. Then, if 2N1 N2 − N1 − N2 <

(m
2

)
,

more than one led pairs have to have the same slope-length values, contradicting the
unique slope-length constraint.

Theorem 6.3 shows that, for N × N grids, when m ≥ 2N, it is not possible to have
distinct led pairs generated from m leds covering the grid.

7. DISCUSSION

In this section we first show how to work around the theoretical limitations for large
coverage areas. Then we discuss the practical aspects of the system. Let ledSet be
the set of the leds from the placement, and also let ledi, an element of the ledSet,
have coordinates (xi, yi) where 1 ≤ i ≤ |ledSet|. Then, pairSet contains led pairs
Pk(ledl, ledm) where 1 ≤ k ≤ (|ledSet|

2

)
, 1 ≤ l ≤ |ledSet|, 1 ≤ m ≤ |ledSet|, and l 
= m.

Let LengthPk
be the length of the pair, Pk. In other words, LengthPk

is the distance
between ledl and ledm, |ledl, ledm|. Also, let SlopePk

be the slope of the pair, Pk. In other
words, SlopePk

is the slope between ledl and ledm. Within the scope of these definitions,
a perfect solution has distinct LengthPk

and SlopePk
values for all k. Recall that the ME

uses the length and slope values to differentiate the IR leds. However, for a solution of
a large coverage area, LengthPk

and SlopePk
values might be equal for some k. We will

analyze a led placement produced by CRS-LP for a 72 × 72 grid with OW size 12 × 9
to see the effect of equal length and slope values of different led pairs on our system.
First, we inspect the frequency of the led pairs having equal length and slope values.
Then, we will see how far the led pairs having equal length and slope values are from
each other. These observations help us examine the goodness of the led placements.

7.1. Frequency of Led Pairs Having Equal Length and Slope Values

The frequency of the led pairs having equal length and slope values should be analyzed
to see the effectiveness of our system. If there exist too many led pairs having equal
length and slope values, then it is harder to differentiate them. The led placement
produced by CRSLP (n = 72) has 117 leds, so there exist 6786 led pairs. These led
pairs constitute 4028 different length and slope values. Figures 17(a) and 17(b) show
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Fig. 18.

the frequencies of the led pairs having equal length and slope values produced by our
example led placement globally and locally, respectively. For Figure 17(a), the x-axis
classifies the 4028 distinct length and slope values, and the y-axis shows the number
of pairs having the same length-slope value. Maximum frequency is 8 and more than
3 is quite rare, which means having pairs with equal length-slope values in the OW
all the time is a low probability. Besides, in a large number of cases, more than two IR
sensors will be in the OW, resulting in at least three pairs. It is enough to have one led
pair with distinct length-slope value in the OW for the location estimation.

The maximum number of led pairs having distinct length-slope values for a 72 × 72
grid is 10224 (2N1 N2 − N1 − N2; Section 6). Therefore, 6196 (10224–4028) of them are
unused. Since the WRC is capable of only tracking the area within its OW, local led pairs
are important for our system. There exist 423 led pairs that fit in an OW (local pairs).
Specifically, 180 of them have distinct length-slope values. The maximum number of
led pairs having distinct length-slope values for a 12 × 9 grid is 195 (2N1N2 − N1 − N2;
Section 6). Therefore, 15 (195–180) of them are unused. The ratio of the number of
unused pairs to the maximum number of led pairs having distinct length-slope values
is 15/195 = 0.07. This shows that the led placement produces local pairs having distinct
length-slope values almost close to the theoretical limit.

7.2. Distances between the Led Pairs with Equal Length and Slope

Having analyzed the frequency of the led pairs having equal length and slope values,
let’s see how far these led pairs are from each other. In all led placement methods for
large grids, there exist led pairs having equal lengths. When the slope information is
also used as another attribute, a greater number of pairs can be differentiated. The
distances among the led pairs having equal slope-length values are important for the
accuracy of our localization system. If these led pairs are far from each other, they
can be easily differentiated using other leds around those pairs, resulting in more
accurate location awareness. It turns out that the number of the led pairs having equal
slope-length values fitting in the same OW is low.

We analyze the distances between the led pairs having equal slope-length values
with an example. Figure 18(a) shows the minimum distances among led pairs having
the same length that fit in a 12×9 OW with the led placement produced by the CRS-LP
method for a 72×72 grid. In the figure, the led pairs are classified by their lengths and
the x-axis shows these classes. Then, within each class, the minimum distance among
the distances produced by all the pairs in the same class is plotted as a point in the
figure. The maximum length that fits a 12 × 9 OW, 13.6 (the length of the diagonal of a
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Fig. 19. Led pairs having equal slope-length values within an OW for solution of a 72×72 grid, CRSLP,
12×9 OWs.

12×9 OW = (12−1)2+(9−1)2 = 13.6), is depicted with the horizontal line. Figure 18(b)
includes slope as a second attribute that helps to further differentiate the led pairs.
This figure can be interpreted as follows. All the led pairs are classified by their lengths,
and the x-axis shows these classes. Then, within each class, the led pairs having equal
slope values are clustered, and the minimum distance among the distances produced
by all the led pairs having equal slope-length values is drawn as a point in the figure.

Each point in the figures can be considered a representation of a link which connects
two led pairs. A link is the line segment whose end-points are the points on each
led pair that are the closest, and the length of a link is the distance from the end-
points. There are 350 links (not only the links with minimum lengths but all the links)
where the length of the links is smaller than 13.6 when only length is used in order to
differentiate led pairs. In addition to the length of an led pair, when slope is also used
as a second attribute to differentiate them, there are 90 links connecting two led pairs
having equal slope-length values where the length of the links is smaller than 13.6.
There are some led pairs having equal slope-length values which can fit in the same
OW. The circles in Figure 18(b) represent the links connecting two led pairs having
equal slope-length values both fitting in the same OW. For three of these five links,
they are on different regions of the grid, and the led pairs constituting each link share
a common point so their distances are in between 0 (the first three circles from left to
right in Figure 18(b)). The other two links can both actually fit in the same OW. These
led pairs are the edges of a parallelogram. Figures 19(a) through 19(d) depict the same
pairs that can fit in an OW. Using techniques such as dead reckoning, these pairs can
be differentiated easily, as shown in a simulation in Section 8.

7.3. Practical Hurdles

Our system is capable of overcoming the practical hurdles including faulty leds, im-
precise led placement, misplaced WRC, and skew ceiling. Since we guarantee at least
two IR leds in the OW at any time, three or more leds exist in most of the OWs. As
a result, if a few leds stop working, there would still exist sufficient leds in the OW.
In case there are not at least two leds in the OW as a result of failed leds, the dead
reckoning technique is used with the latest robot location computed and the inertial
sensors. In this case, the error propagates until the WRC detects enough leds in its
OW to estimate the robot location. The error propagation would be minimal unless a
significant amount of leds fail.

The system is not required to have a precise led placement to some degree. A data
structure used for efficient lookup for the real robot position is constructed. The IR pairs
are first sorted according to their length, and then sorted according to their slope values.
Assume that the led pairs are not placed precisely. Then, the pairs with imprecise slope
and length values read from the IR camera are looked up in the data structure. Since the
values in the data structure are precise, whereas the values read from the IR camera are
not, the lookup process involves an approximate search within a meaningful interval.
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Fig. 20. IR led wiring: four regions.

Instead of looking up the exact values, proper interval values for lengths and slopes
are introduced for the approximate search. This approach might increase the number
of matching candidates. However, the IR camera detects more than two IR leds most of
the time, which means more than one led pair is detected in the OW. Each pair is looked
up in the data structure. The matching pair candidates are filtered according to their
relative locations and orientations. For example, if the location of a candidate pair is far
away from the latest computed location of the robot, that pair is eliminated. Moreover,
the relative orientations of the matching pairs help to reduce the candidate pair set.
As a result, the real location of the robot is resolved through analyzing multiple pairs.

A misplaced WRC or a skewed ceiling causes deformations on the led locations read
from the WRC. The use of the data structure and the approximate search overcome
the deformations, resulting in feasible robot location estimations. We include erro-
neous placements of the WRC in our simulations and show that the system still yields
satisfactory robot location estimations.

An array of IR leds can be used for the deployment of the leds. Once the leds are placed
on the appropriate cells in the array, it can be mounted on the ceiling. We estimate the
length of the required cable roughly using the Steiner Minimal Tree (SMT), where a
given set of points is to be connected using minimum total wirelength. Since an array
of leds is used, rectilinear distance (the sum of the horizontal and vertical distance
between two points) is considered. For example, Figure 20 shows the case where the
whole area, which is larger than a football field, is divided into four regions and the
IR leds residing in a region are energized using the wall outlet in the corresponding
region (uses CRS-LP n = 100 placement). The dots represent the IR leds and the “X”
character represents the wall outlet. The total wirelength required is 1196m, costing
$461 (RadioShack rates), and the cost of electricity is roughly $0.48 for a month when
the rates of the utility company in San Antonio Texas (cps energy) are used.

8. SIMULATION

We conducted simulations in order to see the effectiveness of our system. The simu-
lation is written in C++ and we have used the Computational Geometry Algorithms
Library, CGAL [CGAL 2014]. The random waypoint model is used for the ME (Mobile
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Element)’s path. Ns2 (network simulator) [McCanne and Floyd 2014] has a built-in
random waypoint model generator, and the paths are generated using this tool. In
simulations, the frequency of the WRC is 50 Hz. In other words, the WRC reads the
led locations 50 times a second. Moreover, the orientation of the WRC is axis aligned
and does not change over the course of the simulations.

In the perfect system, the WRC should be placed vertically pointing out to the ceiling.
We considered erroneous placements of the WRC (the WRC might have been misplaced
so that there are a few degrees between the normal of the floor and the WRC). A 5◦
error can be realized by the human eye. The WRC is straightened if one realizes that
it is crooked. Therefore, we conducted the simulations with WRC error up to 5◦.

A map of IR leds, which was generated using one of the schemes we discussed, is
fed to the robot. A data structure that is used for efficient lookup for the real position
is constructed. The pairs are first sorted according to their length and then sorted
according to their slope values. The lengths of the pairs are sorted and the pairs having
the same length are merged according to their slope values. We assume that the initial
position of the ME is known, although it is not required (if the given map has unique
led pairs, the ME finds its initial position immediately; otherwise, if there is more than
one candidate for the initial position, that position is resolved eventually as the ME
moves). The ME reads the led locations in its OW. Then, for each pair in its OW, it
finds the corresponding length and slope values. Using these length and slope values,
the data structure is searched for the real locations of the leds that constitute the
pair. Since the led locations read by the IR camera are deformed due to the visual
angle in 3D space, an approximate search within a meaningful interval is applied.
Instead of looking up the exact values, proper interval values for lengths and slopes
are introduced for the approximate search. This approach might increase the number
of matching candidates. However, the IR camera detects more than two IR leds most
of the time, which means that more than one led pair is detected in the OW. Each pair
is looked up in the data structure. The matching pair candidates are filtered according
to their relative locations and orientations. For example, if the location of a candidate
pair is far away from the latest computed location of the robot, that pair is eliminated.
Moreover, the relative orientations of the matching pairs help to reduce the candidate
pair set. After processing all the led pairs in the OW, the location that is the closest to
the initial location is chosen as the current location.

The setup for the simulation considers the 3D space as well as the visual angle. The
vision of the IR camera is set as a rectangular pyramid where the angles between the
opposite triangular faces are 45◦ and 34.5◦. The height of the ceiling is a parameter of
the simulation. An imaginary 1024×768 unit-square-sized OW is calculated using the
value of the height of the ceiling and the angles between the opposite triangular faces.
Depending on the height of the ceiling, the imaginary OW may reside either below or
above the ceiling. To mimic the possible deformation, the location of the intersection
of the OW plane and the line passing through the IR camera and an IR led is used
as the return value of the IR camera. We further analyze the case where the WRC is
misplaced on the robot. The misplacement of the WRC causes more deformation. Our
simulation results show that the system provides feasible accuracy in all cases.

When the WRC is placed perfectly (vertical to the floor), the robot finds its position
with an error of less than a centimeter (cm). When an error of α > 0 degrees in
the x direction and β > 0 degrees in the y direction in 3D space is introduced to the
placement of WRC, two problems will arise. First, the deformation caused by the visual
angle increases. The approximate search finds the matching led pairs most of the time.
Dead Reckoning (DR) is applied when the approximate search does not return any
matching pairs. DR is the process of calculating the position of a moving object based
on its previous location, velocity, and acceleration. DR introduces cumulative errors;
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Fig. 21. CRSLP 100×100.

however, the number of DR calls is minimal in our system, and the error resulting
from DR is reset whenever the ME is able to find its location using the IR leds. The
number of DR calls is minimal, as we discuss later. The second problem caused due to
the misplacement of the WRC comes from the error in the placement of the WRC. An
absolute error of magnitude of about h ×

√
tan2(α) + tan2(β), where h is the height of

the ceiling, is introduced to the location that the ME finds. Figure 21(a) shows the real
path the ME takes and the path that ME figures out. The figure is the output from
a simulation which uses the IR map generated by the CRSLP method with n = 100
(100×100). The height of the ceiling is 15m. The simulation time is 20 minutes. The
speed of the ME is not constant, and it is at most 2m/s. The coverage area is 100m ×
100m. The WRC is placed with an error of 5◦ in the x direction and with an error of 5◦
in the y direction. The absolute error can be easily seen in the figure.

The absolute error, h×
√

tan2(α) + tan2(β), is not acceptable for α and β values such as
5◦ (the magnitude of the error is about 185cm when α = 5◦, and β = 5◦). Therefore we
need a calibration scheme. We applied the simplest calibration method assuming that
the placement of the WRC does not change during the course of the ME’s travel (α and
β values are constant). The ME is placed at a known position Pk. The ME calculates
its position, PME. Then, the ME finds the vector in between Pk, and PME. Using this
vector and the height of the ceiling, the ME computes the virtual α, Vα, and the virtual
β, Vβ values trivially. Vα, and Vβ values do not have to match the exact values of α and
β, although they are very close to the α and β values. After finding Vα and Vβ values,
the error vector (h× tan(Vα), h× tan(Vβ)) is added to the final location that is computed
by the robot for the rest of the simulation. Figure 21(a) shows the calibrated version of
the simulation.

The error on the location of the ME is minimized using the preceding calibration
method. Figures 22(a) and 22(b) show the magnitude of the errors induced through-
out the simulation with CRSLP map(n = 100), h = 15m, and simulation time 1200s
(20 minutes). Figure 22(a) compares the error on the location for α and β values from
0◦ to 2◦ and Figure 22(b) compares the error on the location for degrees from 3◦ to 5◦.
When the error on the WRC increases, the error on the location of the ME increases,
as expected. For example, the average errors on the location are about 1.1mm, 1.7cm,
3.5cm, 5.3cm, 7.5cm, and 10cm when the α and β values considered are (0◦, 0◦), (1◦,
1◦), (2◦, 2◦), (3◦, 3◦), (4◦, 4◦), and (5◦, 5◦), respectively.

Table III demonstrates the percentage of the number of the DR calls to the number
of all location calculations. As seen from the table, the percentages have low values,
meaning that our system does not require much DR. Another result from the table is
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Fig. 22. Accuracy of our system.

Table III. Percentage of Dead Reckoning Calls, Frequency: 50; Calibrated

Error in degrees DR calls percentage (CRSLP100×100) DR calls percentage (CILP31×31)
Ex : 0, Ey : 0 0/57636 = 0 0/44995 = 0
Ex : 1, Ey : 1 11/57636 = 19 × 10−3 % 9/42903 = 21 × 10−3 %
Ex : 2, Ey : 2 41/57636 = 71 × 10−3 % 28/42903 = 65 × 10−3 %
Ex : 3, Ey : 3 75/57636 = 130 × 10−3 % 42/42903 = 98 × 10−3 %
Ex : 4, Ey : 4 126/57636 = 218 × 10−3 % 73/42903 = 170 × 10−3 %
Ex : 5, Ey : 5 189/57636 = 327 × 10−3 % 93/42903 = 216 × 10−3 %

that the number of the DR calls increases as the error on the WRC gets larger. This is
reasonable, since the ME will have difficulty matching the erroneous IR led positions
with the IR map it has. The higher the error, the greater the number of DR calls would
be required. With the help of other sensors such as inertial sensors, the DR algorithm
would work better in the real implementation of our system, and the accuracy on the
location would be higher in a real implementation.

9. CONCLUSION

We propose a low-cost and simple location management system for robots using the
WRC and IR leds. In the proposed schemes, the WRC is placed on the mobile robot and
multiple infrared leds are placed on the ceiling irregularly. The mobile robot finds its
current position using the IR leds in its current window. Since the WRC can track up to
four infrared leds at any time, the patterns observed are limited. The relative position
of the infrared leds with respect to each other is used to find the global position. We an-
alyze the problem theoretically and show that there exist limitations for covering large
areas. We also present how to overcome these limitations. The methods for irregular
placement of the leds consist of LP based methods, a Costas-array-based method, and
an intelligent metric-based random method. The LP-based method, CILP, provides op-
timum solutions for small areas where n ≤ 32, but it is not scalable. Another LP-based
method, ILProwcol, produces good results up to n = 54; however, it is not scalable either.
BILP gives a lower bound on the number of leds required. Incremental LP is a fast and
scalable method producing good results, but its solutions contain the greatest number
leds among all LP-based approaches. The Costas array-based method, CRS-LP, is the
most promising one for large coverage areas since it is scalable. The proposed schemes
can handle rotations and can compute the current location of the robot efficiently and
accurately using the distances among the detected IR leds. Finally, we have simulation
results supporting the accuracy of the system.
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Fig. 23. Illustration of removing-leds phase of CRS-LP algorithm.

APPENDIXES

A. EXAMPLE OF REMOVING LEDS STEP OF CRS-LP ALGORITHM

Figures 23(a) through 23(n) demonstrate an example of the removing-leds step. A 28-
Costas array generated in the Costas generation step is used. The Costas array is
constructed using the Welch method for p = 29 with the primitive element 3 in the
finite field, GF(29). The Costas array augmented with its Voronoi diagram is shown
in Figure 23(m). In Figure 23(a), the Voronoi diagram of the initial point set is shown
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together with the Voronoi cell having the smallest area; see shaded region. The point
in the shaded region is the candidate led to be removed. Line 8 of Algorithm 2 checks
whether the candidate led is an extra led or not. The metric doesn’t change after the
removal, so the candidate led is an extra led, and it is removed. Figure 23(b) shows
the new Voronoi diagram after the led is removed. The shaded area demonstrates the
change in the Voronoi diagram. The second and the third leds are removed similarly, as
shown in Figures 23(c) through 23(f). Before the forth led is removed, two Voronoi cells
have the same smallest area, shown as shaded regions in Figure 23(g). The function
DoesMetricChange returns true for the candidate led that is towards the left upper part
of the grid since the value of the metric is 0 before the removal and 3 after the removal.
Therefore, this candidate led cannot be removed. However, the other candidate led
having the same area as the first one is an extra led and it is removed. Figure 23(h)
shows the new Voronoi diagram after the fourth led is removed. The shaded area
demonstrates the change in the Voronoi diagram. For the fifth led to be removed, the
smallest Voronoi cell is demonstrated with the number 1 in Figure 23(i), and the point
in the cell is the first candidate point. However, it is not an extra led and we continue
with the next smallest Voronoi cell, which is the shaded region represented by the
number 2 in Figure 23(i). The second candidate is an extra led, since the metric doesn’t
change before and after its removal, and it is removed. Finally, this step of the CRS-LP
algorithm terminates after removing a total of 11 leds, resulting in an IR led placement
pattern having 17 leds, as shown in Figure 23(n). The slope length among the pairs
still remains unique.

B. EXAMPLE OF SLIDING-LEDS STEP OF CRS-LP ALGORITHM

Figure 24(a) shows the leds’ positions after the removing-leds step in the example in
Section 4.1.2. Since a 28 × 28 grid is fairly small, sliding method 1 works perfectly
without requiring the next phase of the CRS-LP algorithm. Figures 24(a) through 24(f)
show the steps for the sliding leds algorithm using sliding method 1. Figure 24(b)
demonstrates the union of OWs having 0 or 1 led with the polygon, and the candidate
leds to slide with number annotations just before sliding the first led. There are 13
OWs having less than two leds in the union. After the first iteration, the candidate
led annotated with number 1 is moved to the location (16, 3) from the location (17, 2);
the candidate led annotated with number 3 is moved to the location (9, 7) from the
location (8, 7); and the candidate led annotated with number 4 is moved to the location
(24, 14) from the location (25, 14). After the first iteration, seven OWs having 0 or 1
led left, as well as the union and the new candidate leds, are shown in Figure 24(c). In
second round, Figure 24(c), the candidate led annotated with number 1 is moved to the
location (16, 4) from the location (16, 3); the candidate led annotated with number 2 is
moved to the location (10, 6) from the location (10, 5); and the candidate led annotated
with number 4 is moved to the location (23, 13) from the location (24, 14). After the
second iteration, four OWs having 0 or 1 led left, as well as the union and the new
candidate leds, are shown in Figure 24(d). In the third round shown in Figure 24(d),
the candidate led annotated with number 1 is moved to the location (16, 5) from the
location (16, 4); the candidate led annotated with number 4 is moved to the location
(22, 8) from the location (23, 8). After the third iteration, one OW having 1 led left as
well as the union and the new candidate leds are shown in Figure 24(e). In the fourth
round depicted in Figure 24(e), the candidate led annotated with number 2 is moved
to the location (17, 7) from the location (18, 6); and the candidate led annotated with
number 4 is moved to the location (21, 8) from the location (22, 8). Finally, Figure 24(f)
shows the final led positions without requiring further action, since every OW has at
least 2 leds, and all the led pairs have unique slope-length values.
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Fig. 24. Illustration of sliding-leds (method 1) phase of CRS-LP algorithm.

C. EXAMPLE OF MBR ALGORITHM

Figures 25(a) through 25(o) show the state of the system after each IR led is added, and
Figure 25(p) shows the final led placement when MBR(k = 2, X=12, Y=9, RowSize=30,
ColumnSize=30, thresConst=0.9, repetition=100) is run. MBR returns a set of leds
guaranteeing two IR leds in each OW of size 12 × 9 in a 30 × 30 grid with a threshold
constant value of 0.9 and a repetition value of 100. The first led is added to the location
(16, 13). The vicinity of (16, 13) is shown in Figure 25(a). There are 108 OWs in the
vicinity of (16, 13) and all of them had zero leds in them before adding led 1. Therefore,
metric prev = 2 × 108 + 1 × 0 = 216, according to Eq. (5). After adding led 1, there
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Fig. 25. Illustration of metric-based random led placement (MBR).

will be no OWs having zero IR leds in them and all of the 108 OWs have one led in
them, resulting in metric current = 2 × 0 + 1 × 108 = 108. The value of threshold and
threshold original is 108. The metric difference is 108 (216 − 108), so the if statement
in line 9 of Algorithm 4 holds and the IR led is added to the location, (16, 13). The
location of the next point added is (19, 19). Figure 25(b) demonstrates the vicinity of
(19, 19). The empty circle in the figure represents the most recently added led, and
solid circles represent the previously added leds. In Figure 25(b), there are 108 OWs
in the vicinity of (19, 19). Here, 81 of the OWs contain zero and 27 of the OWs have
1 led in them before led 2 is added. Therefore metric prev = 2 × 81 + 1 × 27 = 189.
After adding led 2, there will be no OWs having zero IR leds in them, 81 of the OWs in
the vicinity have one led in them, and 27 OWs have two IR leds in them, resulting in
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metric current = 2 × 0 + 1 × 81 = 81. The value of threshold and threshold original is
108. The metric difference is 108 (189 − 81), so the if statement in line 9 of Algorithm 4
holds and the IR led is added to the location (19, 19). When the led to be added has a
location closer to the edges of the grid, the number of OWs in the vicinity of the led’s
location is less than X × Y . For example, when the twelfth led is added at location
(27, 26) as shown in Figure 25(l), there are 20 OWs in the vicinity of (27, 26). Before the
led is added, 12 of the OWs in the vicinity have one led and none of them has zero leds
in it, resulting in metric prev = 2×0+1×12 = 12. After the led is added, there are no
OWs containing zero or one leds in them, resulting in metric current = 2×0+1×0 = 0.
The value of threshold is 12 at this point. The metric difference is 12 (12 − 0), so the
if statement in line 9 of Algorithm 4 holds and the IR led is added to the location (27,
26). The final point is added to the location (20, 2) as shown in Figure 25(o). After
this final point is added, there are no OWs having less than two IR leds in them
left. Therefore, the function has0s1s in line 10 of Algorithm 4 returns false and the
algorithm terminates, presenting the system shown in Figure 25(p) guaranteeing at
least two IR leds in each 12 × 9 OW in a 30 × 30 grid.
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