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Generalized Optimal Response Time Retrieval of Replicated Data
from Storage Arrays

NIHAT ALTIPARMAK and ALI ŞAMAN TOSUN, University of Texas at San Antonio

Declustering techniques reduce query response times through parallel I/O by distributing data among paral-
lel disks. Recently, replication-based approaches were proposed to further reduce the response time. Efficient
retrieval of replicated data from multiple disks is a challenging problem. Existing retrieval techniques are
designed for storage arrays with identical disks, having no initial load or network delay. In this article,
we consider the generalized retrieval problem of replicated data where the disks in the system might be
heterogeneous, the disks may have initial load, and the storage arrays might be located on different sites.
We first formulate the generalized retrieval problem using a Linear Programming (LP) model and solve
it with mixed integer programming techniques. Next, the generalized retrieval problem is formulated as
a more efficient maximum flow problem. We prove that the retrieval schedule returned by the maximum
flow technique yields the optimal response time and this result matches the LP solution. We also propose a
low-complexity online algorithm for the generalized retrieval problem by not guaranteeing the optimality of
the result. Performance of proposed and state of the art retrieval strategies are investigated using various
replication schemes, query types, query loads, disk specifications, network delays, and initial loads.
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1. INTRODUCTION

Traditional retrieval methods based on index structures developed for single disk
and single processor environments [Beckmann et al. 1990; Gaede and Gunther 1998;
Guttman 1984; Samet 1989] are ineffective for the storage and retrieval in multiple
processor and multiple disk environments. Since the amount of data is large, it is very
natural to use parallel disk architectures in these systems. Besides scalability with
respect to storage, storage arrays offer the opportunity to exploit I/O parallelism dur-
ing retrieval. The most crucial part of exploiting I/O parallelism is to develop storage
techniques that access the data in parallel. Declustering is the most common approach
for efficient parallel I/O. The data space is partitioned into disjoint regions (buckets),
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and data is allocated to multiple disks. When users issue a query, data falling into
disjoint partitions is retrieved in parallel from multiple disks.

After allocating the data to the storage array efficiently, the next step is to retrieve
the buckets of a given query so that the response time of the query is minimum. The
solution is trivial if the buckets of the query are not replicated across multiple disks,
since without replication, there is only one candidate disk from which a bucket can be
retrieved. However, replicated declustering makes the optimal response time retrieval
problem more complicated. Maximum flow is the general technique used in the opti-
mal response time retrieval of replicated data. However, existing retrieval techniques
are designed for storage arrays with identical disks. Recently, hybrid storage arrays
consisting of solid-state and rotating disks have appeared on the market. Beside the
heterogeneity of the disks, current retrieval techniques also assume that replication is
done at a single site using disks with no initial load or network delay. Optimal response
time retrieval of the replicated data from heterogeneous storage systems located on
multiple sites with initial load and network delay remains an open problem.

Optimal response time retrieval problem of replicated data was first formulated
by Chen and Rotem [1994] along with a maximum flow solution for homogeneous stor-
age arrays located on a single site. Tosun [2008] extended the problem by locating the
storage arrays on two different sites connected with a dedicated network. A maximum
flow solution including an online algorithm is proposed for this extended problem. This
article extends Tosun [2008] further by defining the generalized optimal response time
retrieval problem that handles heterogeneous storage systems, disks with initial loads,
and any number of sites having different network delays. We propose two fundamen-
tally different approaches to the generalized problem. Our first approach uses the LP
model and the second uses the maximum flow formulation. We theoretically prove
that the retrieval schedule returned by the maximum flow approach yields the opti-
mal response time and we observe that this result matches the optimal response time
calculated by the LP approach. A low complexity online algorithm is also proposed
for the generalized retrieval problem of not guaranteeing the optimality of the result.
Extensive experiments are performed using different parameters of the generalized
retrieval problem in order to compare the performances of proposed and state of the
art retrieval strategies.

The rest of the article is organized as follows. In Section 2 we present the background
information and the related work on declustering. Section 3 explains our application
model. Section 4 describes the basic retrieval problem and Section 5 provides the
generalized retrieval problem along with the proposed solutions. We investigate the
performance of the proposed algorithms in Section 6 and conclude with Section 7.

2. BACKGROUND AND RELATED WORK

In this section, we provide the preliminaries and the related work on declustering.

2.1. Preliminaries

For a homogeneous storage array with N disks, an allocation policy is said to be strictly
optimal if no query Q that retrieves |Q| buckets, has more than � |Q|N � buckets allocated
to the same disk. The most common query type is a range query. In a range query,
the user specifies an area of interest using a range of values for each dimension. The
result of the range query is the set of buckets in the dataset that have values within
the specified range for each dimension. Except a few restricted cases, it is impossible to
reach strict optimality for spatial range queries [Abdel-Ghaffar and El Abbadi 1997].
The lower bound on extra disk accesses is logarithmic in N [Bhatia et al. 2000].

ACM Transactions on Storage, Vol. 9, No. 2, Article 5, Publication date: July 2013.
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Fig. 1. Declustering of 5× 5 grid.

A declustering of a 5×5 grid using 5 disks is given in Figure 1. Each square denotes
a bucket and the number on the square denotes the disk that the bucket is stored
at. An i × j range query has i rows and j columns. For retrieval of an i × j range
query, the best we can expect is � i∗j

5 � and this happens if the buckets of the query
are spread to the disks in a balanced way. In most cases, this is not possible. We use
the notation [ i, j] , 0 ≤ i, j ≤ N − 1 to denote the bucket in row i and column j. A
query can be represented as a set using this notation. Consider the 2 × 2 query Q1 =
{[ 0, 0] , [ 0, 1] , [ 1, 0] , [ 1, 1] } shown in Figure 1. Since 2 buckets of the query are stored
on disk 1 it requires 2 disk accesses. Deviation from optimal retrieval cost � i∗j

5 � is called
additive error. For the 2× 2 query the additive error is 1. Additive error of a scheme is
the maximum additive error over all the queries.

2.2. Related Work

Several methods have been proposed for declustering data, including Disk Modulo
[Du and Sobolewski 1982], Field-wise Exclusive OR [Kim and Pramanik 1988],
Hilbert [Faloutsos and Bhagwat 1993], General Multidimensional Data Allocation
[Hua and Young 1997], cyclic allocation schemes [Prabhakar et al. 1998a, 1998b],
Golden Ratio Sequences [Chen et al. 2000], Hierarchical [Bhatia et al. 2000], Dis-
crepancy declustering [Chen and Cheng 2002], and Threshold-Based Declustering
[Tosun 2005a, 2005c, 2007b]. Some declustering techniques utilize information about
query distribution [Ghandeharizadeh and DeWitt 1990a, 1990b]. Use of combinatorial
designs including Latin squares [Kim and Prasanna-Kumar 1993] and Latin cubes
[Fan et al. 1994] is proposed for a variant of declustering problems where array
blocks are distributed among multiple memory modules. When the number of disks
is a power of two, a declustering scheme that achieves the lower bound is proposed
by Atallah and Prabhakar [2000]. Optimization-based approaches [Koyuturk and
Aykanat 2005; Liu and Wu 2001; Shektar and Liu 1996] are proposed to handle
arbitrary datasets and queries.

All of these declustering schemes were designed assuming a single copy of the
data. Recently, replication strategies for spatial range queries [Chen and Cheng
2003; Ferhatosmanoglu et al. 2004; Frikken 2005; Frikken et al. 2002] and arbitrary
queries [Oktay et al. 2009; Tosun 2004, 2005b] were proposed. Replication improves
the worst-case additive error for declustering using multiple copies of the data.
In addition to offering lower worst-case additive error, replication has many other
advantages including better fault-tolerance and support for queries of arbitrary shape.
Readers are directed to Tosun [2007a] for an in-depth comparison and analysis of
replicated declustering schemes.

3. APPLICATION MODEL

Many applications have data generated at multiple sites and queried by users from
multiple sites. Storing all the data at a central site is impractical. Replication of data
at multiple storage arrays at distant locations is necessary since location-based server
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Fig. 2. Storage arrays with a dedicated network.

selection can be used and the load can be distributed among the servers. An example
model is provided in Figure 2, where geographically distant storage arrays are con-
nected over a dedicated network.

Many Internet service providers now offer dedicated Internet access with band-
width, latency, packet loss, and availability guarantees. For example, XO commu-
nications’ dedicated Internet access [XO] has the following guarantees. Round-trip
latency of 65 milliseconds edge-to-edge within the XO network. Round-trip packet loss
of at most 1% edge-to-edge within the XO network and availability of 100%. All the
guarantees are measured over a calendar month.

Although traditional HDD (hard disk drive)-based storage arrays still dominate the
market share, SSD (solid-state drive)-based storage arrays [Nimbus 2010; Ramsan
2010; Sun 2009b; Violin 2010, 2011] and hybrid storage arrays [Adaptec 2010;
EqualLogic 2011; Sun 2009a; Zebi 2012] composed of SSDs and HDDs have gained
a lot of attention recently. Our model assumes that the storage arrays can be HDD
based, SSD based, or hybrid.

Potential applications of the model include the following.

— Dataset for an application is stored on a storage array. A new high-end storage array
is purchased. Instead of moving all the data to the new storage array, a system
spanning the two storage arrays can be used. Storage arrays are costly and making
the most out of them is crucial.

— A large dataset is split and stored at storage arrays at multiple sites. We want to
run an application that potentially processes parts of the whole dataset. The model
allows us to do this efficiently.

— An SSD based or hybrid storage array is added to a storage system. Since SSDs have
write limitations, it is necessary to use them together with other storage arrays and
the model above can be used for this purpose.

— High-end computer centers with storage arrays can be combined to create storage
systems with much larger capacity in an affordable way.

4. BASIC RETRIEVAL PROBLEM

In the optimal response time retrieval problem, we have N disks and |Q| buckets. Each
bucket can be replicated among multiple disks. The goal is to find a way of retrieving
the requested buckets of a query from the disks so that the overall response time of the

ACM Transactions on Storage, Vol. 9, No. 2, Article 5, Publication date: July 2013.
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Table I. Notation

Notation Meaning

N Total number of disks in the system
S Total number of sites
|Q| Total number of buckets to be retrieved; query size
c Number of copies for each bucket

Bij 1 if bucket i is retrieved from disk j, 0 otherwise

Lj Total number of buckets retrieved from disk j;
∑|Q|

i=1 Bij
Ij 0 when Lj is zero, 1 when Lj > 0
Cj Average retrieval cost of a single bucket from disk j
Xj Time it takes for disk j to process initial load before new requests can be handled
Dj Network delay to the site where disk j is located
R Optimal response time

query is minimized. For the basic problem, we assume that the disks are homogeneous
without having any initial load or network delay and they are all located on a single
site. In this case, the overall response time of the query is determined by the disk
that is used to retrieve the maximum amount of buckets. In other words, we need to
retrieve as few buckets as possible from the disk that is used to retrieve the maximum
amount of buckets.

The notation used in this article along with the meaning is provided in Table I.

4.1. LP Solution

The basic problem can be formulated in LP as follows. For a given query, there are N
different cost functions rj that measure the retrieval cost of a query for each disk j.

rj =
|Q|∑

i=1

Bij, j = 1, . . . , N. (1)

In other words, rj holds the number of buckets Lj that are retrieved from disk j. We
want to

Minimize : Maximum{r1, r2, . . . , rN}

Subject to : rj =
|Q|∑

i=1

Bij, j = 1, . . . , N

N∑

j=1

Bij = 1, i = 1, . . . , |Q|.

(2)

Our second constraint,
∑N

j=1 Bij = 1, i = 1, . . . , |Q|, ensures that every bucket i in
the query is only retrieved from a single disk. Since the formulation includes both
minimization and maximization, the problem as defined, is not a linear program.
However, we can convert this problem into a linear form by defining a new variable
R ≥ rj, j = 1, . . . , N, and minimizing R. We may rewrite this as

R−
|Q|∑

i=1

Bij ≥ 0, j = 1, . . . , N. (3)

ACM Transactions on Storage, Vol. 9, No. 2, Article 5, Publication date: July 2013.
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Fig. 3. Orthogonal allocation.

Thus, we can reformulate (2) as the linear program

Minimize : R

subject to : R−
|Q|∑

i=1

Bij ≥ 0, j = 1, . . . , N

N∑

j=1

Bij = 1, i = 1, . . . , |Q|.

(4)

There are c ∗ |Q| + 1 unique variables in this formulation. Although it seems like we
need N ∗ |Q| variables for the Bijs, since we cannot retrieve a block from a disk that
it is not stored at, the number of variables required for Bijs decreases to c ∗ |Q|. We
need an additional variable R to be used as the objective value. rjs are redefinitions of
current variables. Besides the variables, we use a total of N + |Q| constraints in the
formulation. N comes from the first constraint of the formulation and |Q| comes from
the second. In LP literature, this problem is defined as minimizing the maximum of
linear functions [Dantzig and Thapa 1997], and to the best of our knowledge, this is
the first LP formulation for the optimal response time retrieval of replicated data.

4.2. Max-Flow Solution

The basic problem can also be solved as a max-flow problem using graph theory. When
replication is used, each bucket is stored on multiple disks and we have to choose one
of the disks for retrieval of the bucket. Consider the query q1 given in Figure 3. Allo-
cations on the left and right show the first and second copies of the data respectively.
Query q1 is a 3 × 2 query with optimal retrieval cost of �3×2

7 � = 1. However, since in
the first copy the buckets [0, 0] and [2, 1] are both stored on disk 0, retrieval using the
first copy requires 2 disk accesses. When we consider both copies, we can represent the
problem as a maximum flow problem [Chen and Rotem 1994].

For each bucket and for each disk, we create a vertex. In addition, two more vertices
called source and sink are created. The source vertex s is connected to all the vertices
denoting the buckets, and all the vertices denoting the disks are connected to the sink
vertex t. An edge is created between vertex vi denoting bucket i and vertex vj denoting
disk j if bucket i is stored on disk j. The next step is to define the capacities of the
edges. All the edges except the ones between the disks and the sink have capacity 1.
The capacity of the edges between the disks and the sink is set to � |Q|N �.

The Maximum flow representation of query q1 for a single site is given in Figure 4.
Maximum flow is shown using thick lines in the figure. Since query q1 has only 6

ACM Transactions on Storage, Vol. 9, No. 2, Article 5, Publication date: July 2013.
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Fig. 4. Max-flow representation of query q1 for single site.

buckets and �6
7� = 1, all the edges have capacity 1 in this case. When using the

maximum flow representation, if the maximum flow between the source and the sink
is |Q|, then the query can be retrieved using � |Q|N � accesses. Otherwise we need to
increment the capacities of all the edges between the disks and the sink by 1 and rerun
the max-flow algorithm until the flow of |Q| is reached. The max-flow algorithm is
called O(|Q|) times in the worst case, where all the buckets are stored in a single disk.

THEOREM 4.1. There exists a flow of size |Q| from the source to the sink in the flow
graph if and only if there exists a solution to the bucket retrieval problem.

PROOF. Given in Chen and Rotem [1994] for Theorem 3.1.

5. GENERALIZED RETRIEVAL PROBLEM

In order to have a general solution for the problem of finding the optimal response time
retrieval of a given query, we need to handle the following issues.

— Heterogeneous Disks. Different types of disks, might have different response times
depending on their rotational speeds (7200, 10,000, 15,000 RPM etc.), inter-
face (SCSI, IDE etc.), underlying technology (HDD, SSD etc.) and so on. Retrieval
from the fastest disk possible in a situation, in which all the other factors are the
same is preferable.

— Multisite Retrieval and Network Delay. Data to be retrieved may be distributed
among multiple servers and location-based server selection can be used to improve
the retrieval performance. The solution must ensure that if all the other properties
are the same, the disk j with the lowest network delay dj is chosen for retrieval.

— Initial Load. A disk might already have an initial load to be retrieved from previous
queries. If all the other factors are the same for a set of disks, the disk with the
minimum or no initial load should be chosen for retrieval.

Our aim is coming up with the optimal response time retrieval of a given query for
a situation involving any combination of the issues discussed in the preceding. We
propose two fundamentally different approaches to the generalized retrieval problem.
Our first approach uses the LP model and the second approach uses the maximum flow
formulation. The main reason behind starting with the LP approach was to identify
whether the problem is solvable. We first attacked the problem with the LP model since
the parameters of the system can be easily formulated in LP. Being able to formulate
the problem with LP and obtaining the optimal response time gave us confidence to
attack the problem with a more efficient maximum flow approach. Besides, solving the
same problem using two different approaches will allow us to test the correctness of the

ACM Transactions on Storage, Vol. 9, No. 2, Article 5, Publication date: July 2013.
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approaches. Since both LP and max-flow techniques guarantee the optimal retrieval
schedule, response times returned by them for a given query should match.

5.1. LP Solution

In this section, we will explain how to formulate the generalized retrieval problem
in LP. Note that the initial load Xj and the network delay Dj for a disk j should be
considered in the cost function of disk j only if disk j is used for retrieval. We can
ensure this by using binary indicator variables. Therefore, we define a binary indicator
variable Ij for each disk j, which takes 0 when the disk load Lj is zero, 1 when Lj > 0.
Cj denotes the average time to retrieve a single bucket from the disk j.

As in the formulation of the basic problem, we have N different cost functions rj for
each disk j that measure the retrieval cost of a given query.

rj = Ij ∗ (Dj + Xj)+ Cj ∗ Lj, j = 1, . . . , N. (5)

We want to
Minimize : Maximum{r1, r2, . . . , rN}
Subject to : rj = Ij ∗ (Dj + Xj)+ Cj ∗ Lj, j = 1, . . . , N

N∑

j=1

Bij = 1, i = 1, . . . , |Q|.
(6)

Similar to (2), the problem as defined here is not a linear program but can be made
into one by defining a new variable R ≥ rj, j = 1, . . . , N, and minimizing R. We may
rewrite this as

R− Ij ∗ (Dj + Xj)− Cj ∗ Lj ≥ 0, j = 1, . . . , N. (7)

Thus, we can reformulate (6) as the linear program

Minimize : R
Subject to : R− Ij ∗ (Dj + Xj)− Cj ∗ Lj ≥ 0, j = 1, . . . , N

N∑

j=1

Bij = 1, i = 1, . . . , |Q|.
(8)

For the formulation of the generalized case, beside the c ∗ |Q| + 1 variables used in
the formulation of the basic case, we need N additional indicator variables making
a total of c ∗ |Q| + N + 1 unique variables. Djs, Xjs, and Cjs are constants, rjs and
Ljs are redefinitions of current variables. In terms of constraints, the generalized case
requires N extra constraints for the indicator constraints. Therefore, we use a total of
2N+|Q| constraints in the formulation. In CPLEX [CPLEX], indicator constraints can
be specified as follows.

Ij = 0→ Lj = 0 (9)

5.2. Max-Flow Solution

In this section, we will explain how to solve the generalized retrieval problem using
maximum flow techniques. For a given flow graph G, let E be the edge set holding
every edge ej between the disk vertex j and the sink, and caps(ej) be the capacity of the
edge ej; for j = 1, . . . , N. In the general case, time to retrieve b buckets from disk j can
be calculated using the following cost function:

cost(ej, b) = Dj + Xj + b ∗ Cj, (10)

ACM Transactions on Storage, Vol. 9, No. 2, Article 5, Publication date: July 2013.
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where Dj denotes the network delay to the site where disk j is located, Xj denotes the
initial load of disk j, and Cj denotes the average time to retrieve a bucket from disk
j. In order to find the optimal response time of a given query, we should find caps(ej)
for j = 1, . . . , N, where G has a max-flow of |Q| and the max of cost(ej, caps(ej)) is
minimized.

In the basic problem, since all the disks were homogeneous without having any net-
work delay or initial load, their cost functions to retrieve the same number of buckets
were equal to each other. Therefore, we could initially set the capacities of all the edges
in E to the theoretical lower bound � |Q|N �, and if the flow of |Q| cannot be reached, we
could increment these capacities all at the same time. However, the cost functions of
the disks may be different for the generalized problem since each disk may have dif-
ferent retrieval performance, different initial load, and different network delay. There-
fore, capacities of the edges in E should be set carefully depending on the cost function
of each disk in the system.

First, we will explain the construction of the flow graph for the general retrieval
problem. Next, capacity incrementation algorithm of the edges in E considering the
cost functions of the disks will be presented. And finally, in order to speed up the capac-
ity incrementation process, a binary capacity scaling algorithm that sets the capacity
of the edges in E using a binary search alike technique will be provided.

5.2.1. Flow Graph Construction. For retrieval of a query Q in the general case, maximum
flow representation needs |Q| + N + 2 vertices and |Q| ∗ (S + 1) + N edges, where S
is the number of sites and N is the total number of disks in the system. Assuming Ni
represents the number of disks at site i; the total number of disks can be calculated as
follows: N =∑S

i=1 Ni.

ALGORITHM 1: ConstructFlowGraph()

Inputs: Q, N
Outputs: G, E, caps, s, t
1: G = createEmptyGraph()
2: for i← 0 to N + |Q| + 1 do
3: v[ i]= G.new vertex()
4: s = v[ 0]
5: t = v[ N + |Q| + 1]
6: for i← 1 to |Q| do
7: e = G.new edge(s, v[ i] )
8: caps[ e]= 1
9: for j← |Q| + 1 to |Q| +N do
10: if bucketAtDisk(i, j) then
11: e = G.new edge(v[ i] , v[ j] )
12: caps[ e]= 1
13: for i← |Q| + 1 to |Q| +N do
14: e = G.new edge(v[ i] , t)
15: caps[ e]= 0
16: E.insert(e)

A flow graph is constructed using Algorithm 1. By taking |Q| and N as inputs, Algo-
rithm 1 creates the flow graph G with source s and the sink t, a capacity array caps,
and an edge set E. caps holds the capacities of the edges in G, and E holds all the
edges between the disk vertices and the sink. Lines 1–5 create an empty graph, add
all required vertices to the graph and specify the source vertex s and the sink vertex t.
Then lines 6–8 add an edge from s to every vertex representing the query buckets and

ACM Transactions on Storage, Vol. 9, No. 2, Article 5, Publication date: July 2013.
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Fig. 5. Max-flow representation of query q1 for two sites.

set the capacities of these edges to 1. Lines 9–12 add an edge from every vertex repre-
senting the query buckets to the vertices representing the disks if the bucket is stored
at that disk and also set the capacities of these edges to 1. Finally, lines 13–15 add an
edge to the graph from every vertex representing the disks to t with 0 capacities. These
edges are also added to the edge set E at line 16.

Consider the query q1 given in Figure 3 again but this time assume that the grid
on the left represents the allocation at site 1 and the grid on the right represents the
allocation at site 2. Max-flow representation of the query q1 is given in Figure 5. There
are 14 disks in the system, disks 0–6 are located at site 1 and disks 7–13 are located
at site 2.

5.2.2. Capacity Incrementation. Since the cost functions of the disks may vary in the gen-
eral case, capacities of the edges in E cannot be incremented all at the same time. Cost
functions of the disks should be considered in this capacity incrementation process.
Starting from 0 capacities for the edges in E, we use the following two steps repeatedly
to reach the final capacity values yielding the optimal response time retrieval in the
general case.

(1) Increment the capacity of the edge in E yielding the minimum cost, which can
be computed as Minimum{cost(ej, caps(ej) + 1)} for j = 1, . . . , N using the cost
functions given in (10). If more than one edge yields the minimum cost, increment
them together.

(2) Run the max-flow algorithm for the capacities calculated in step 1. Stop if max-flow
is |Q|, go to step 1 otherwise.

The capacity incrementation algorithm explained using these steps above is given
in Algorithm 2. We made the following two observations in order to speed up the
algorithm.

OBSERVATION 1. There is no need to run the max-flow algorithm if the total of the
capacities of the edges in E is less than |Q|.

PROOF. Since E holds all the edges going to the sink, maximum flow of |Q| cannot
be reached if the total of the capacities of the edges going to the sink is less than |Q| .

ACM Transactions on Storage, Vol. 9, No. 2, Article 5, Publication date: July 2013.



�

�

�

�

�

�

�

�

Generalized Optimal Response Time Retrieval of Replicated Data from Storage Arrays 5:11

ALGORITHM 2: CapacityIncFlow()

Inputs: Q, G, E, D, X , C, s, t
Output: caps, flows
1: for all e ∈ E do
2: total caps += caps[ e]
3: repeat
4: min cost←MAXDOUBLE
5: for all e ∈ E do
6: v← G.source(e)
7: if G.in degree(v) ≤ caps[ e] then
8: E.delete(e)
9: else
10: cost[ e]← D[ e]+ X[ e]+ (caps[ e]+ 1) ∗ C[ e]
11: if costs[ e] < min cost then
12: min cost← costs[ e]
13: for all e ∈ E do
14: if costs[ e] == min cost then
15: caps[ e]++
16: total caps++
17: if total caps ≥ |Q| then
18: flow value←MaxFlow(G, s, t, caps, flows)
19: until flow value == |Q|

Table II. System Parameters

Disk j Cj (ms) Dj (ms) Xj (ms)

0–6 8.3 2 1
7,8,10,13 6.1 1 0
9,11,12 13.2 1 0

OBSERVATION 2. Let vj denote the source vertex of the edge ej ∈ E and in degree(vj)
denote the incoming degree of the vertex vj. There is no need to increment caps(ej) if
in degree(vj) ≤ caps(ej).

PROOF. Since ej ∈ E, vj represents the disk j and in degree(vj) represents the total
number of buckets stored in disk j for a given query |Q|. The maximum amount of
buckets we can retrieve from a disk is limited by the number of query buckets stored
in that disk.

Observation 1 is checked in line 17 and Observation 2 is checked in lines 6–8 of
Algorithm 2. Note that in line 8, we do not remove the edge from the graph but remove
it from our edge set E. Lines 10–12 determine the edges in E yielding the minimum
retrieval cost and lines 14–15 increment the capacities of the edges with this minimum
cost. Note that, if more than one edge yields the same retrieval cost, their capacities
are incremented at the same time as in the basic problem.

For query q1 given in Figure 3 and the set of parameters summarized in Table II, the
flow graph giving the optimal response time retrieval calculated using Algorithm 2 is
given in Figure 5. E holds all the edges between the disk vertices and the sink vertex
t. All the capacities of the edges in E are 0 at the beginning. First, the edge between
the disk vertex 13 and the t, e13, is deleted from E as in line 7–8 of the algorithm based
on the Observation 1. Then, costs for each edge in E are calculated as in line 10 of the
algorithm. Since min cost = 7.1 for disks 7, 8, and 10 the capacities of e7, e8, and e10
are incremented by 1, as shown by INC1 in the figure. For these capacities, there is
no need to run the max-flow algorithm based on Observation 2 since total caps = 3 is
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smaller than |Q| = 6. For the second incrementation step, min cost = 11.3 for disks
0–6; the capacities of e0-e6 are incremented by 1 as shown by INC2 in the figure and
the max-flow is run this time. Max-flow returns 6 and the algorithm stops, since the
flow value = 6 = |Q|. This flow is shown with thick lines in the figure. Optimum re-
sponse time of q1 is 11.3 ms by retrieving the buckets from the disks that are connected
with thick lines in the figure. By using the final flow graph, the optimal response time
is calculated as R =Maximum{cost(ej, flow(ej))} for j = 1, . . . , N using the cost function
given in (10).

THEOREM 5.1. Starting with 0 capacities for every edge between a disk vertex and
the sink, the response time R calculated using the flow graph returned by Algorithm 2
is optimal.

PROOF. Algorithm 2 starts with 0 capacities. In each incrementation step, it only
increments the capacity of the edge(s) yielding the next minimum retrieval time. After
each incrementation step, it calls max-flow to check the maximum flow of |Q|. The
algorithm stops for the first capacity set yielding the maximum flow of |Q|. Since it
considers all possible retrieval times starting from the minimum in an exhaustive
search manner and stops when the maximum flow of |Q| is reached, R calculated using
the flow graph returned by Algorithm 2 is optimal.

Although Algorithm 2 minimizes the amount of max-flow calls and the capacity in-
crementation using the observations, it will perform O(c|Q|) max-flow calls in the worst
case. The number of max-flow calls is directly dependent on the number of incrementa-
tion steps carried out. Since we start from 0 capacities, we may end up with the worst
case number of max-flow calls if the cost functions of the disks are unique. In order
to improve the performance of Algorithm 2, we propose the binary capacity scaling
algorithm.

5.2.3. Binary Capacity Scaling. The challenge of the generalized retrieval problem is
coming up with the capacity values of the edges in E that yield the optimal response
time R. If we know these capacities, the problem is easy since calling the max-flow al-
gorithm returns the optimal retrieval schedule. Algorithm 2 finds the capacity values
that yield R in an exhaustive search manner; however we need a more efficient algo-
rithm since obtaining the optimal retrieval schedule is a time critical issue. In order to
speed up Algorithm 2, we propose the binary capacity scaling method. The main idea
behind binary capacity scaling is bringing the capacity values up to an initial value be-
fore the incrementation step is started by Algorithm 2. In this way, we will have fewer
incrementation steps, and consequently fewer max-flow calls. Observation 3 consti-
tutes the base of the binary capacity scaling technique.

OBSERVATION 3. Given a flow graph G. For every time value t, there exists a cor-
responding capacity set holding the capacity of the edges in E. For a time value t, this
capacity set is calculated as caps(ej, t) = � t−Dj−Xj

Cj
� for every edge ej between the disk j

and the sink.

Observation 3 is described using Figure 6 for one site assuming arbitrary values of
Cj, Dj, and Xj for disk number j given on the x-axis. Distribution of the buckets on the
disks is given on the left and the corresponding capacities of the flow graph are given
on the right. For a given time t, calculated capacities using Observation 3 represent the
maximum number of buckets that can be retrieved from a disk during the time t. The
network delay shown with the horizontal line is the same for all the disks since they
are all located on a single site; however, initial loads of the disks may vary as shown by
the horizontal patterned black blocks located on some of the disks. The dashed empty
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Fig. 6. Capacity distribution for a time t.

blocks for each disk represent the time required for the retrieval of the next bucket
that cannot be retrieved in the given time t. For instance, disk 5 is the slowest disk in
the system since retrieval of even one bucket requires more than t amount of time.

Based on Observation 3, we can state the following lemmas.

LEMMA 5.2. Given a flow graph G, the optimal response time R is the minimum
time t that G has a maximum flow of |Q| using the capacities caps(ej, t) for every edge ej
between the disk j and the sink.

PROOF. From the definition of optimal response time.

LEMMA 5.3. Given a flow graph G and time values t1, t2, if t1 ≤ t2, then
caps(ej, t1) ≤ caps(ej, t2) for every edge ej between the disk j and the sink.

PROOF. Follows from Observation 3.

By using Observation 3, we can calculate the corresponding capacities of the flow
graph for a given time value t. If these capacities yield a maximum flow of less than |Q|,
then we can conclude that some of the query buckets cannot be retrieved in this given
time t. In order to retrieve these nonretrieved buckets, we can use Algorithm 2 for
capacity incrementation starting from the capacities calculated for t. In other words,
Theorem 5.1 can be generalized as follows.

THEOREM 5.4. Given a flow graph G and a time value t, assume that the maximum
flow of G is less than |Q| for the capacity values caps(ej, t) for every edge ej between the
disk j and the sink. Then, starting with these capacities, the response time R calculated
using the flow graph returned by the Algorithm 2 is optimal.

PROOF. Follows from Theorem 5.1. We know that the capacity set found for a t value
using Observation 3 represents the maximum number of buckets that can be retrieved
from each disk during the time t. In other words, capacities calculated represent one of
the minimum retrieval time values that Theorem 5.1 searches through. Starting with
0 retrieval time, the minimum retrieval time values calculated after each incrementa-
tion step in Theorem 5.1 can be considered as a linear chain of values leading to the
optimal response time R. Each value in the chain is followed by only one unique value
without causing forks in the chain. Since the chain is linear, starting from any point of
the chain and using Algorithm 2 will lead us to the optimal response time R.

By using Theorem 5.4, we can reach R with the initial capacity values calculated
for a time value t. However, our challenge here is to find the time value t that is close
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enough, but less than, R in an efficient way so that the number of incrementation steps
performed by Algorithm 2 is minimized. For this problem, we are using the binary
range reduction technique given in Theorem 5.5.

THEOREM 5.5. Given a flow graph G for a query Q. Using Observation 3; define
an upper range tmax where G has a maximum flow of |Q|, and define a lower range
tmin where G has a maximum flow of less than |Q| such that the optimal response
time R is within the range, tmin < R ≤ tmax. If the range is reduced by half using the
middle value tmid = tmin + (tmax − tmin) ∗ 0.5, then R is also within this reduced range,
tmin < R ≤ tmax; where if G has a maximum flow of |Q| using the capacities calculated
for tmid, then tmax = tmid, else tmin = tmid.

PROOF. Upper range is [ tmid, tmax] and lower range is [ tmin, tmid]. We know that
maximum flow is |Q| for tmax and less than |Q| for tmin. If the maximum flow is |Q|
for tmid, then we can skip all the time values in the upper range since we are looking
for the minimum time value satisfying the maximum flow of |Q| by Lemma 5.2. We
can set tmax to tmid knowing that the maximum flow is still |Q| for the new tmax. If the
maximum flow is less than |Q| for tmid, then we can skip all the time values in the
lower range since they will yield smaller or equal capacity values by Lemma 5.3 and
we cannot reach the maximum flow of |Q| using these capacity values. In this case, we
can set tmin to tmid knowing that the maximum flow is still less than |Q| for the new
tmin.

The range reduction process described in Theorem 5.5 can be applied repeatedly to
reduce the range further and tmin can be used to calculate the initial capacities at
the end. However, a stopping case is required. We stop the range reduction process
when the range is less than or equal to the time of retrieving a bucket from the fastest
disk in the system, Min{Cj} for j = 1 . . . N. In this way, we make sure that the final
incrementation steps performed by Algorithm 2 will be bounded by the number of
disks in the worst case.

The binary capacity scaling algorithm is given in Algorithm 3. The algorithm first
defines the range [ tmin, tmax] that the optimal retrieval time lies within, in lines 5–8.
For tmax, all the blocks are assumed to be retrieved from a single disk with the max-
imum cost; and for tmin, � |Q|N � of the blocks are assumed to be retrieved from a single
disk with the minimum cost. Since the maximum flow for tmin should be less than
|Q|, we subtract the min speed value from tmin in line 11. min speed is the average
retrieval time of a single block from the fastest disk in the system calculated in lines
9–10.

The algorithm finds the capacities of the flow graph for tmid in line 16 and calls the
max-flow algorithm in line 17. If there is a solution such that flow value == |Q|, then
tmax is decreased to tmid in line 19; otherwise, tmin is increased to tmid in line 22. The
algorithm stops when the range is smaller than min speed and calculates the final
capacities using the tmin of the final range in line 23–24.

Investigation on the position of the optimal response time within the initial
[ tmin, tmax] range led us to use the r value, which is used in line 14 for the calcula-
tion of tmid, closer to tmin until tmax is decreased for the first time. In this way, we can
decrease the number of max-flow calls. As a result of the experimentation on the posi-
tion of the optimal response time within the initial range, we found out that r = 2.5

N as
in line 12 of the algorithm is a good approximation for the general case.

Consider query q2 given in Figure 3 for the system parameters described in Table II.
In Figure 7, optimal response time retrieval of the query q2 is shown. The blocks are
located on the disks that they are retrieved from and the block heights vary depending
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ALGORITHM 3: BinaryCapScale()
Inputs: Q, G, E, D, X , C, s, t
Output: caps, flows
1: min speed←MAXDOUBLE
2: tmin ←MAXDOUBLE
3: tmax ← 0
4: for all e ∈ E do
5: if D[ e]+X[ e]+ |Q| ∗C[ e] > tmax then
6: tmax ← D[ e]+X[ e]+ |Q| ∗ C[ e]
7: if D[ e]+X[ e]+� |Q|N � ∗C[ e] < tmin then

8: tmin ← D[ e]+ X[ e]+� |Q|N � ∗ C[ e]
9: if C[ e] < min speed then
10: min speed← C[ e]
11: tmin -= min speed
12: r← 2.5

N
13: while (tmax − tmin) ≥ min speed do
14: tmid ← tmin + (tmax − tmin) ∗ r
15: for all e ∈ E do
16: caps[ e]← �(tmid −D[ e]− X[ e] )/C[ e] �
17: flow value←MaxFlow(G, s, t, caps, flows)
18: if flow value == |Q| then
19: tmax ← tmid
20: r← 0.5
21: else
22: tmin← tmid
23: for all e ∈ E do
24: caps[ e]← �(tmin −D[ e]− X[ e] )/C[ e] �

on the retrieval performance of the disk. Optimal response time is found to be 19.6
ms using the retrieval schedule given in the figure. The initial range calculated by
Algorithm 3 for this specific example is shown in the figure using max = 370.6 and
min = 7.1. The max value is calculated assuming that all the blocks are only allocated
in the disk with the maximum cost; however, this is a very low probability. Using
r = 2.5

14 = 0.17 for the calculation of the first middle value yields mid1 = 72. Since the
graph using the capacities calculated for the time value mid1 = 72 has a maximum
flow of |Q|, max is set to mid1 for the next range. After decreasing max to mid1, we
set r to 0.5 as in line 20 of the algorithm since the optimal response time can now
be anywhere in the range. However, since the graph does not have a maximum flow
of |Q| for mid5 = 19.2, min is set to mid5 for the final range. The algorithm stops
for the range [ mid5, mid3] since the range (mid5 − mid3 = 4.1) is smaller than the
min speed = 6.1, which denotes the time of retrieving a bucket from the fastest disk
in the system. By using the initial capacities calculated for mid5, Algorithm 2 will
only need 2 incrementation steps to reach the optimal response time of 19.6. The first
incrementation step is for disks 7, 10, 13; and the second incrementation step is for
disks 0–6. Since the costs of the disks are equal to each other in each incrementation
step, the capacities are incremented together.

The proposed max-flow solution is given in Algorithm 4. First the flow graph is con-
structed using Algorithm 1 in line 2. The next step is scaling the capacities using
Algorithm 3 in line 3. Then, the scaled capacity values stored in caps are incremented
until a maximum flow of |Q| is reached using Algorithm 2 in line 4. Optimal response
time is calculated using the flow graph returned by Algorithm 2 through lines 5–9.
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Fig. 7. Binary Capacity Scaling for query q2.

ALGORITHM 4: MaxflowGeneralizedRetrieval()
Inputs: Q, N, D, X , C
Output: R
1: R← 0, flows← 0, caps← 0
2: ConstructFlowGraph()
3: BinaryCapScale()
4: CapacityIncFlow()
5: for all e ∈ G do
6: if flows[ e] > 0 then
7: edge cost← D[ e]+ X[ e]+ flows[ e] ∗ C[ e]
8: if edge cost > R then
9: R← edge cost

COROLLARY 5.6. The R value returned by Algorithm 4 is the optimal response time
for the generalized retrieval problem. Assuming Bij is 1 if bucket i is retrieved from disk
j and 0 otherwise, the optimal retrieval can be obtained by simply setting Bij to the flow
value between the vertex vi denoting bucket i and the vertex vj denoting disks j.

Corollary 5.6 follows from Theorems 5.4 and 5.5.

5.3. Online Algorithm

In this section, we propose a low complexity online algorithm for the generalized re-
trieval problem given in Algorithm 5. As distinct from the LP and the max-flow so-
lutions, the online algorithm does not guarantee the optimality of the result. On the
other hand, it is simpler and has a lower time complexity than the other two solutions.
The algorithm makes a final retrieval decision for a bucket in a round-robin fash-
ion by considering retrieval from the site introducing the minimal cost. The function
DiskAtSite(i, j) returns the disk vertex k bucket, i is stored in site j, and load[ k] holds
the number of buckets scheduled for disk k. The site that leads to the earliest retrieval
time is chosen for retrieval of a bucket.
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ALGORITHM 5: OnlineGeneralizedRetrieval()
Inputs: Q, N, S, D, X , C
Output: R
1: R← 0
2: for i← 1 to N do
3: load[ i]← 0
4: for i← 1 to |Q| do
5: min cost←MAXDOUBLE
6: for j← 1 to S do
7: k = DiskAtSite(i, j)
8: cost = D[ k]+ X[ k]+ (load[ k]+ 1) ∗ C[ k]
9: if cost < min cost then
10: min cost← cost
11: min disk index← k
12: load[ min disk index]++
13: if min cost > R then
14: R← min cost

5.4. Complexity Analysis of the Algorithms

The LP solution provided in this article is a special case of linear programming called
binary integer programming, classified as NP-hard [Karp 1972]. Complexity of the
max-flow solution described in Algorithm 4 depends on the complexity of the maxi-
mum flow algorithm used, which can be solved in polynomial time. The number of
max-flow calls performed by Algorithm 4 in the worst case is O(log(|Q|) + N), where
O(log(|Q|)) comes from the binary capacity scaling part and O(N) comes from the ca-
pacity incrementation part. The online algorithm’s worst case complexity is O(S|Q|)
without requiring any max-flow computation.

6. EXPERIMENTAL RESULTS

In this section, we provide the experimental results using various sets of parameters.
We investigate the impact of allocation scheme, query type, query load, disk speed,
network delay to the site, and initial load of the disks, on the experimental results.
In all experiments with synthetic workload, we used an N × N grid and N disks per
site. Experiments with the real-world workloads are performed using a 100× 100 grid
and the actual number of disks specified in the workload per site. We implemented
the algorithms in C++ and compiled using g++ optimization level 1 (-O1). For the
graph structure and the max-flow computation, we used the LEDA library version
3.4.1 [Mehlhorn and Näher 1995], which implements the max-flow algorithm using
the push-relabel method proposed by Goldberg and Tarjan [1988] with time complex-
ity of O(V3) for V vertices. For the LP model, we used the CPLEX Academics 12.3
[CPLEX ] MIP solver, which uses the branch and bound method.

6.1. Allocation Scheme

We describe the three different allocation schemes used in our experiments in the
following.

— Random Duplicate Allocation. Random Duplicate Allocation (RDA) [Sanders et al.
2000] stores a bucket on two disks chosen randomly from the set of disks. The
retrieval cost of random allocation is at most 1 more than the optimal, with high
probability for single site retrieval.

— Orthogonal Allocation. Orthogonal allocations [Ferhatosmanoglu et al. 2004; Tosun
2004] guarantee that when the disks that a bucket is stored at are considered as a
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pair, each pair appears only once in the disk allocation. In an N × N declustering
system with N disks, there are N2 buckets and N2 pairs. So it is possible to have
each pair exactly once. For the first copy, we used the threshold-based declustering
scheme [Tosun 2007b].

— Dependent Periodic Allocation. A d-dimensional disk allocation scheme
f (i1, i2, . . . , id) is periodic if f (i1, i2, . . . , id) = (a1 ∗ i1 + a2 ∗ i2 + . . .+ ad ∗ id) mod N,
where N is the number of disks and each ai i = 1 . . . d satisfies gcd(ai, N) = 1
and ai 
= 0 [Altiparmak and Tosun 2012; Tosun and Ferhatosmanoglu 2002]. For
the first copy, we use the allocation scheme yielding the lowest additive error
based on the results provided in Altiparmak and Tosun [2012]. For the second
copy, a shifted version of the first copy is used. The two allocations are of the form
f (i, j) = a1 ∗ i+ a2 ∗ j mod N and g(i, j) = f (i, j)+m mod N, 1 ≤ m ≤ N − 1.

6.2. Query Types

We now describe the three different query types we used in our experiments.

— Range Query. Range queries are rectangular in shape. We assume a wraparound
grid consistent with the choice of disk allocations. A range query is identified with
4 parameters (i, j, r, c) 0 ≤ i, j ≤ N− 1, 1 ≤ r, c ≤ N. i and j are indices of the top left
corner of the query and (r, c) denote the number of rows and columns in the query.
The number of distinct range queries on an N ×N grid is (N∗(N+1)

2 )2, which can be
found by counting the number of ways to choose two points out of N + 1 row and
column points on the grid as follows:

(N+1
2

) ∗ (N+1
2

)
.

— Arbitrary Query. Arbitrary queries have no geometric shape. Any subset of the set
of buckets is an arbitrary query. We can denote arbitrary queries as a set and the
number of arbitrary queries is

∑N2

i=1
(N2

i

)
which is equal to 2N2

(number of subsets
of a set with N2 elements).

— Connected Query. The buckets in a connected query form a connected graph. Create
a node for each bucket in the query and connect two buckets [i, j] and [m, n] by
an edge if they are neighbors in the wraparound grid. If the resulting graph is
connected, then it is a connected query.

6.3. Query Load

We use three synthetic, and one real-world, query loads. For the synthetic workloads,
we use the notation pi

k to denote the probability that a query in load i can be retrieved
in k disk accesses optimally. Once the optimal number of disk accesses k is selected,
the number of buckets is selected uniformly from the range [(k − 1)N + 1, kN]. As a
real world workload, we use the popular Exchange workload representing Microsoft’s
production mail server. Query size is determined using the real request sizes of the
trace.

— Load 1. The distribution of queries is similar to the distribution of queries for the
particular query type. For the distribution of range queries, smaller size queries
are more likely; for the distribution of arbitrary queries, medium size queries are
more likely. We use the distribution of range queries for connected queries, since
it is hard to find the distribution of connected queries. The expected bucket size of
load 1 queries is N2

4 +O( 1
N ) for range queries and N2

2 +O( 1
N ) for arbitrary queries.

— Load 2. The distribution of queries is uniform. We achieve this by setting p2
k = 1

N .

The expected bucket size of load 2 queries is N2

2 .
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Table III. Disk Specifications

Producer Model Type RPM Seek T. Latency Bandwidth Avg. Access Time

Seagate Barracuda HDD 7.2 K 8.5 ms 4.1 ms 57 MB/s 13.2 ms
WD Raptor HDD 10 K 4.2 ms 5.5 ms 68 MB/s 8.3 ms

Seagate Cheetah HDD 15 K 3.6 ms 2.0 ms 86 MB/s 6.1 ms
OCZ Vertex SSD - - 0.1 ms 197 MB/s 0.5 ms
Intel X25-E SSD - - 0.07 ms 250 MB/s 0.2 ms

— Load 3. Smaller queries are more likely. We achieve this by setting p3
k = 2N

(2N−1)∗2k .

In this case p3
k = 1

2p3
k−1, 2 ≤ k ≤ N. The expected bucket size of load 3 queries is 3N

2 .
— Exchange. A popular multidevice server trace previously used in various storage

related studies [Agrawal et al. 2008; Narayanan et al. 2008, 2009]. It is taken from
a server running the Microsoft Exchange 2007 inside Microsoft [Kavalanekar et al.
2008]. Exchange is a mail server for 5000 corporate users consisting of 9 active
volumes and about 40 million block read requests. The trace covers a 24-hour
weekday period starting at 2:39pm on the 12th December 2007 and is broken
into 15-minute intervals. Exchange is publicly distributed via the online trace
repository provided by the Storage Networking Industry Association [SNIA].

6.4. Disks

We have experimental results on five different disks. Specifications of the disks are
provided in Table III. All the values except the Average Access Time value are obtained
by the factory specifications of the disk. Average access time is the time spent to reach
a bucket in a disk and calculated experimentally running Ubuntu Disk Utility’s read
only benchmark on the related disk.

In order to calculate the value of Cj—average retrieval cost of a single bucket from
disk j—we need to consider both the average access time and the transfer time of a
bucket. Transfer time of a bucket can easily be calculated using the Bandwidth value
provided in the table. For example, the transfer time of an HDD block (512 B) from a
Barracuda disk is calculated as 9 microseconds or the transfer time of an SSD block
(4 KB) from a Vertex SSD is calculated as 20 microseconds. Since the average access
time is the dominating factor of the retrieval cost of a bucket, it is a good metric by
itself to be used as the value of Cj.

6.5. Experiment Parameters

All the experiments conducted are summarized in Table IV. R(2,10,2) means that a
number among the set 2, 4, 6, 8, and 10 is chosen randomly. If the system is homo-
geneous, Cheetah disk is used for all the disks in the system. If the system is het-
erogeneous, then the disks are chosen randomly from HDDs, SSDs, or HDDs+SSDs.
We choose the initial load values to be around the range [0–20] based on the aver-
age access times of the disks presented in Table III. Similarly, network delay values
are chosen to be in the same range based on a study performed on a storage network
presented in Orenstein [2003]. According to this study, the total estimated network la-
tency (propagation delay + node delay + congestion delay) is found to be around 23ms.
For experiment 20, all the following sites have the same properties as the first site.

6.6. Results

In this section, we provide some of the experimental results that are interesting for our
purposes. All the results are available on the project web page [PW]. Experiments are
performed for 1000 queries if the workload is synthetic. For real-world workloads, we
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Table IV. Experiments

Exp. Num. of Disk Site 1 Site 2
Num. Sites Prop. Disks Delays Loads Disks Delays Loads

1 1 hom. Cheetah 0 ms 0 ms - - -
2 1 het. SSD 0 ms 0 ms - - -
3 1 het. HDD 0 ms 0 ms - - -
4 1 het. SSD+HDD 0 ms 0 ms - - -
5 1 het. SSD+HDD R(2,10,2) R(2,10,2) - - -
6 2 hom. Cheetah 0 ms 0 ms Cheetah 0 ms 0 ms
7 2 hom. Cheetah 0 ms 0 ms Cheetah 0 ms 20 ms
8 2 hom. Cheetah 0 ms 5 ms Cheetah 0 ms 15 ms
9 2 hom. Cheetah 0 ms 10 ms Cheetah 0 ms 10 ms

10 2 hom. Cheetah 0 ms 15 ms Cheetah 0 ms 5 ms
11 2 hom. Cheetah 0 ms 20 ms Cheetah 0 ms 0 ms
12 2 hom. Cheetah 0 ms 0 ms Cheetah 20 ms 0 ms
13 2 hom. Cheetah 5 ms 0 ms Cheetah 15 ms 0 ms
14 2 hom. Cheetah 10 ms 0 ms Cheetah 10 ms 0 ms
15 2 hom. Cheetah 15 ms 0 ms Cheetah 5 ms 0 ms
16 2 hom. Cheetah 20 ms 0 ms Cheetah 0 ms 0 ms
17 2 het. SSD 0 ms 0 ms HDD 0 ms 0 ms
18 2 het. HDD 0 ms 0 ms SSD 0 ms 0 ms
19 2 het. SSD+HDD 0 ms 0 ms SSD+HDD 0 ms 0 ms
20 2-5 het. SSD+HDD R(2,10,2) R(2,10,2) SSD+HDD R(2,10,2) R(2,10,2)

used the same number of requests performed in the workload. In most of the experi-
ments, we used two different metrics to compare the performance of different retrieval
algorithms. The first metric is the time it takes to retrieve all the queries performed in
a given experiment, notated as Retrieval Time or Total Retrieval Time. Retrieval time
does not include the runtime of the algorithm. Therefore, in a given experiment, Total
Retrieval Time value is expected to be the same for the algorithms guaranteeing the
optimal response time retrieval. The second metric is the the average time it takes to
calculate the retrieval decision of a query, notated as Avg. Runtime Per Query.

We propose three fundamentally different algorithms: LP, Max-flow, and Online.
Among the algorithms we propose, we guarantee the optimality of the Total Retrieval
Time for LP and Max-flow (with and without the binary capacity scaling technique)
approaches. We tested the Total Retrieval Time values returned by LP and Max-flow
algorithms for Experiment 20 using two sites and found out that the results match
as expected. If not stated otherwise, we only use Max-flow with binary capacity scal-
ing (Algorithm 4) to calculate the Total Retrieval Time for the rest of the experiments,
since it is has the fastest execution time.

For the Avg. Runtime Per Query comparisons, the machine we used has dual Intel
Xeon X5672 quad-core processors with a total of 8 cores. Each core has 3.2 GHz of clock
speed and the machine has 32GB of physical memory running on an Ubuntu 10.04.03
LTS operating system. The multithreading options of LEDA and CPLEX are disabled
for fair comparison, therefore all the experiments use a single core only.

Initial load and network delay affect the experimental results in the same way.
Therefore, the results for experiments 7, 8, 9, 10, and 11 are equivalent to the re-
sults for experiments 12, 13, 14, 15, and 16 respectively, since their (inital load +
network delay) values are equal to each other.

6.6.1. Max-Flow Solution vs. LP Solution. In this section, we compare the Avg. Runtime
Per Query values returned by the LP and the Max-flow with the binary capacity
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Fig. 8. Experiment 20, running time of LP vs. Max-flow, load 3, RDA, two sites.

scaling algorithm using Experiment 20 for two sites. Results are provided in Figure 8
for different query types of load 3. The x-axis shows the number of disks N per site
and the y-axis shows the Avg. Runtime Per Query. The time value shown on the y-axis
is represented on a logarithmic scale. We only present the results for the allocation
scheme of RDA here since the other allocation schemes produce similar results.

Although both of the algorithms have the ability to calculate the optimal response
time retrieval schedule, their execution time difference is obvious as one might also
guess from their time complexities, presented in Section 5.4. It is clear from Figure 8
that LP is a few orders of magnitude slower than Max-flow depending on the number
of disks and the request size.

6.6.2. Retrieval Performance of the Allocation Schemes. In this section, we investigate the
retrieval performance of the different allocation schemes introduced in Section 6.1.
The motivation behind providing this section is two-fold. First, proposed algorithms
can calculate the optimal response time retrieval schedule without depending on the
allocation scheme. Second, the allocation scheme in use for a storage array plays an
important role in its performance. Since it was not possible to calculate the optimal
retrieval time for the generalized case before this work, a true comparison of differ-
ent allocation schemes could not be performed for heterogeneous disks having initial
load and network delay. We believe that using our proposed algorithms as a metric to
compare the performance of allocation schemes is another contribution of this work.

Dependent Periodic Allocation generally performs the worst for the multisite re-
trieval. This can be realized as a result of Experiment 20 with two sites shown in
Figure 9. Orthogonal Allocation and RDA perform similar to each other but they per-
form generally better than the Dependent Periodic Allocation. The reason for this lies
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Fig. 9. Experiment 20, total retrieval time.

in the second copy chosen for the Dependent Periodic Allocation. Since the second copy
used in site two is the shifted version of the first copy used in site one, the second site
does not have the ability to complement the cases where the first site performs badly.
On the other hand, Orthogonal Allocation seems a better scheme to be used in multi-
site retrieval since the first copy used in site one is orthogonal to the second copy used
in site two.

When one site is composed of SSDs and the other site is composed of HDDs, as in
Experiment 17 shown in Figure 10, retrieval performance of the allocation schemes
are similar to a single site retrieval as in Experiment 2 shown in Figure 11. Since the
optimal response time retrieval enforces the usage of the fastest disk available in order
to minimize the total retrieval time, the site with SSDs is heavily used, especially
when the query size is small as in Load 3. For Load 1 and Load 2, the allocation
schemes perform similarly to each other, but the performance of RDA degrades signif-
icantly for small queries of Load 3. Allocation schemes perform in a similar way for
experiments 7 (=12), 8 (=13), 10 (=15), and 11 (=16), since they also behave like a single
site retrieval because of the differences between the total delay values among the two
sites.

When the disks are homogeneous and the total delay values among the
disks (inital load + network delay) are similar to each other, then the performance
of the allocation schemes changes depending on the query type. This can be better
observed from Experiment 9 shown in Figure 12 for small queries of Load 3.

— Dependent Periodic Allocation performs poorly for Arbitrary queries, but good for
Range queries.
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Fig. 10. Experiment 17, total retrieval time.

— Orthogonal Allocation performs poorly for Connected and Range queries as the
number of disks increase, but good for Arbitrary queries.

— RDA performs poorly for Range queries, but good for Arbitrary and Connected
queries.

Retrieval performance of the allocation schemes for Experiment 6 is similar to the
results of Experiment 9 since the disks are also homogeneous and the total delay val-
ues of the disks for the two sites are also equal to each other in Experiment 6.

In summary, the allocation scheme to be used in a storage array should be chosen
carefully depending on the characteristics of the system. First of all, Dependent Peri-
odic Allocation should generally be avoided in the case of a multisite retrieval except
for a few specific cases of known query types. Second, if the retrieval is known fre-
quently to be from a single site, then RDA should generally be avoided if the query
sizes are expected to be small. And finally, if the disks and the total delay values
among the disks are more like homogeneous, then the allocation scheme should be
chosen mainly depending on the expected query type of the system. In this specific
case, Dependent Periodic Allocation can be the choice of allocation if Range queries are
heavily expected. Otherwise, Orthogonal Allocation performs best if Arbitrary queries
are more common and RDA performs well in many cases if Connected queries are more
expected.

6.6.3. Online Retrieval Algorithm. The online retrieval algorithm (Online) does not guar-
antee the optimality of the retrieval time; however, how well does it perform compared
to the optimal values? In this section, we compare the retrieval performance of Online
to the optimal retrieval values calculated using Max-flow.
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Fig. 11. Experiment 2, total retrieval time.

Online returns the optimal retrieval values for experiments 1 through 5, which can
be observed from Figure 13 for Experiment 5. This result is not surprising because
these experiments are performed for a single site using a single copy for each bucket.
When there is a single copy in the system, the retrieval choice of a bucket is obvious.
In this case, there is no need to construct the flow graph and to compute the maximum
flow. The optimal retrieval schedule from a single site can be calculated using the
Online algorithm proposed in Algorithm 5, in O(|Q|) operations.

When there is more than one site in the system, then the performance of Online
gets closer to the optimal values for the experiments that behave like a single site
retrieval such as Experiment 7 shown in Figure 14. However, when the disks become
more heterogeneous and the initial load/network delay values become more random,
as in Experiment 20, then the performance difference between Online and the optimal
values increases gradually as can be seen in Figure 15.

6.6.4. Running Times of the Proposed Algorithms. In this section, we compare the Avg.
Runtime Per Query values of the three algorithms proposed; Max-flow with binary
capacity scaling, Max-flow without binary capacity scaling, and Online. The results
are provided in Figure 16 for Experiment 20. The figure shows three runtime values
for every algorithm, each value representing a different allocation scheme. These
values are plotted using the same line style. The Avg. Runtime Per Query values of
different allocation schemes are similar to each other for all the algorithms proposed.
A more important factor in the execution time is the heterogeneity of the system.
The Avg. Runtime Per Query value decreases as the disks become more homogeneous
and the load/delay values among the disks become more similar to each other. Since
Experiment 20 is the one with all random system parameters, values shown in
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Fig. 12. Experiment 9, total retrieval time.

Figure 16 are the maximum execution times achieved among the all experiments
conducted.

Use of the binary capacity scaling algorithm decreases the execution time of Max-
flow significantly. For N = 100, expected bucket size of a connected query is around
5000 for load 2. While Max-flow without the binary capacity scaling algorithm requires
1 to 2 seconds to return the optimal retrieval schedule of 5000 buckets from 100 disks,
Max-flow with the binary capacity scaling algorithm represented in Algorithm 4 re-
quires only 30 to 70 ms, or 10 microseconds for each bucket on average. Online algo-
rithm represented in Algorithm 5 requires less than a millisecond for the retrieval of
5000 buckets from 100 disks by not guaranteeing the optimality of the result.

Execution time of the Max-flow approach is highly dependent on the amount of max-
imum flow calculations performed by the algorithm. Algorithm 4 decreases the execu-
tion time significantly since the maximum flow calculations are performed fewer times
thanks to the binary capacity scaling algorithm. We investigated the number of max-
flow calls performed with and without the binary scaling algorithm and the results are
provided in Figure 17 for Experiment 20. Use of the binary capacity scaling algorithm
clearly limits the number of max-flow calls to around 10, as can be observed from the
figure. This means that the expected number of maximum flow calls is much fewer
than the worst case value of O(log(|Q|)+N) presented in Section 5.4.

Execution time of Algorithm 4 also depends on the initial r value chosen for the
calculation of the tmid presented in Algorithm 3, line 14; where tmid = tmin + (tmax –
tmin) ∗ r. Figure 18 shows the position of the optimal retrieval time value within the
initial [ tmin, tmax] range for Experiment 9. The Y-axis shows the optimality value
calculated using the formula opt−tmin

tmax−tmin
. It is clear from the figure that the optimum
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Fig. 13. Experiment 5, Online vs. Max-flow, arbitrary queries, orthogonal.

retrieval time is much closer to the tmin value than the tmax value. Choosing an r
value closer to the optimality curve presented in the figure plays an important role
in shrinking the range faster and consequently decreasing the number of max-flow
calls. Note that this r value is needed until the first time tmax is decreased, since after
that point, the optimal response time can lie anywhere on the range. After the tmax
is decreased for the first time, we can set r to 0.5 to calculate the middle value in the
range. Since the curve in Figure 18(c) is a good upper bound for all the experiments
we conducted, we set r to 2.5

N , which is the equation of the fitted curve in Figure 18(c).

6.6.5. Comparison with Other Approaches. In this section, we compare the performance
of the proposed algorithms with the following state of the art approaches.

— Algorithm-B. Proposed by Chen and Rotem [1994]. This is the only approach be-
sides ours that we are aware of guaranteeing optimal response time retrieval. The
problem is formulated as a network flow problem and a Ford-Fulkerson based al-
gorithm is proposed for the solution guaranteeing the optimality of the result. The
limitation of the algorithm is that it can only handle the basic retrieval problem,
where the disks within or among the storage arrays are assumed to be homoge-
neous and the initial loads or the network delays of the disks are not considered.

— Power of Two. A heuristic-based solution inspired by Mitzenmacher [2001] for the
retrieval of replicated data. In order to retrieve a bucket, two candidate disks
are randomly selected among the pool of the disks having a copy of the bucket.
Retrieval is performed from the disk resulting in the fastest retrieval time. This
decision can be made online considering the disk parameters, initial load of the
disk, and the network delay to the site where the disk resides. Actually, our
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Fig. 14. Experiment 7, Online vs. Max-flow, arbitrary queries, orthogonal.

proposed online retrieval algorithm reduces to the Power of Two when the number
of sites are two. This heuristic does not guarantee the optimality of the result;
however, it is expected to perform well considering the low execution time.

— Random. Another heuristic-based solution based on a completely random selection.
Retrieval of a bucket is performed from the disk chosen randomly among the pool
of disks having a copy of the bucket.

First, we compare the performance of the algorithms guaranteeing optimal response
time retrieval. Since these algorithms guarantee the optimality of the result, the To-
tal Retrieval Time values returned by these algorithms will be the same. Therefore,
a better metric for the comparison is looking at the execution time of the algorithms.
Here, we compare the Avg. Runtime Per Query values returned by our Max-flow ap-
proach (mf w/binary) and Algorithm-B. Among the experiments we performed (see
Table IV), Algorithm-B can only solve Experiment 1 and Experiment 6 because of its
limitation of handling only the basic retrieval problem. Since there is no replication
in the Experiment 1, we make the comparison for Experiment 6. Note that the pro-
posed algorithms handling the generalized retrieval problem can also handle the basic
retrieval problem. Figure 19 shows the Avg. Runtime Per Query values returned by
mf w/binary and Algorithm-B. The results are shown for RDA using different query
types and query loads. Execution times of the algorithms are similar to each other for
Load 3 since the query sizes are smaller in Load 3. However, it is clear from the figure
that Algorithm-B cannot scale well when the request size increases. For Load 1 and
Load 2, Algorithm-B is up to 40 times slower than Max-flow. Performance degradation
of Algorithm-B is mainly caused by the edge reversals and the extensive number of
depth-first searches performed by the Ford-Fulkerson-based solution.
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Fig. 15. Experiment 20, Online vs. Max-flow, arbitrary queries, orthogonal.

Next, we compare the performance of the approaches that cannot guarantee the
optimality of the result. We also plot the optimal retrieval value that our Max-flow
approach returns, to point out how the other algorithms perform compared to the opti-
mal. Figure 20(a) shows the Total Retrieval Time values for Experiment 20 using RDA
and Load 1 using Arbitrary queries. We collected the results for the number of sites
shown on the x-axis using 100 disks per site. As expected, Power of Two and Online
return the same Total Retrieval Time values when there are two sites in the system.
However, when the number of sites increases, Online performs better than Power of
Two. This is expected since Power of Two considers only two sites while Online con-
siders all the sites for the fastest retrieval. Random performs worst among the three.
Even though Online seems really close to the optimal in this figure, according to a
more detailed comparison made in Figure 15 for two sites, the optimal is still around
1.2 times better than Online.

Figure 20(b) compares the execution times of Online, Power of Two, and Random.
Execution times of all three approaches are really close to each other; Random being
the fastest and Power of Two being the slowest until the number of sites reaches four.
After four sites, Power of Two becomes faster than Online. Execution times of Random
and Power of Two are more stable when the number of sites increases compared to On-
line. Execution time of Online increases linearly as the number of sites increases. This
is expected since Online considers all the sites in the system for the fastest retrieval of
a bucket. We believe that this does not constitute a problem, since the number of sites
cannot be very high considering the replication cost of data.

In Figure 21, we compare the performance of Online, Power of Two, and Random,
using five sites, different query loads, and query types. In this case, the x-axis shows
the number of disks per site. Its clear from the figure that the performance difference
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Fig. 16. Experiment 20, running time.

between the algorithms does not depend on query type. The retrieval time difference
among the algorithms seems constant for Load 3 shown in Figure 20(c) since the max-
imum query load (number of buckets requested in a query) is around 150 buckets for
Load 3. However, it is clear that the retrieval time difference increases as the query
load increases. The retrieval time difference between Power of Two and Online reaches
50 seconds when the query load becomes 5000 for 100 disks of Load 1 and Load 2
shown in Figure 21(a) and Figure 21(a) respectively. This difference is more than 3
minutes for Online and Random. On the other hand, it is not possible to observe such
a difference in the execution time of the algorithms. Even for the query load of 5000
buckets for 100 disks shown in Figure 21(d), execution times of the algorithms are
similar to each other, all being less than half a millisecond. In summary, Random and
Power of Two cannot recover their retrieval time disadvantage using their execution
time since Online runs as fast as Random and Power of Two.

Finally, we compare the performance of different retrieval algorithms using a real-
world workload. As a real-world workload, we use the Exchange workload explained
in Section 6.3. In this experiment, we use the first 15 minute interval of the whole
workload covering 24 hours. In this first 15 minute interval used, a total of 236,183
queries (requests) are performed. Minimum query load is 1 bucket and the maximum
query load is 1664 buckets, 30 buckets being the mean. There are 9 disks in the system
and we use a 100× 100 grid to represent all the buckets referenced in the trace. Since
the location of copies cannot be retrieved from the trace information, we use RDA as
the allocation scheme. The results are shown in Figure 22 for the arbitrary queries of
Experiment 20. The x-axis shows the number of sites used. Since Algorithm-B cannot
handle the generalized retrieval problem, results cannot be shown for Algorithm-B.
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Fig. 17. Experiment 20, max-flow run amount.

First of all, performance of the retrieval algorithms under a real world workload is
very similar to that under the synthetic workload shown in Figure 20. This means that
the synthetic workloads we used are good representatives of the real world. Second,
retrieval time difference between, Online and Max-flow is as small as 45 seconds when
the number of sites reaches five, while this difference was around 6 minutes for two
sites. However, the execution time difference between these algorithms is also very low,
being less than 0.17 msec per query at most. In fact, when we add the total execution
time and the total retrieval time values, Max-flow is still the fastest algorithm among
all four algorithms for the Exchange trace.

6.7. Discussion and Future Work

According to the problem we focus on, we are given a set of buckets to be retrieved and
we are asked to find the optimal response time retrieval schedule in the generalized
case. For this reason, we focus on one single query (disk request) at a time, where
each query is composed of multiple buckets (disk blocks) to be retrieved. Our proposed
optimal solutions guarantee that the retrieval schedule yields minimum retrieval time
for that query. However, handling the queries in a first-come first-serve fashion might
not necessarily result in the minimum total time to finish all the queries even though
the retrieval time of each individual query is optimal. Therefore, the next problem
would be minimizing the total response time in the general case considering all the
queries. Clearly, it is not possible to solve this problem without having a solution to the
generalized retrieval problem described in this article: finding the optimal response
time retrieval schedule given a set of buckets to be retrieved.

Beside the necessity of the solution proposed in this article, there are multiple trade-
offs that need to be considered to find the optimal retrieval time for the total number

ACM Transactions on Storage, Vol. 9, No. 2, Article 5, Publication date: July 2013.



�

�

�

�

�

�

�

�

Generalized Optimal Response Time Retrieval of Replicated Data from Storage Arrays 5:31

Fig. 18. Experiment 9, position of the optimal response time within [ tmin, tmax].

of queries in the generalized case. First of all, we should consider the execution time of
the retrieval algorithms and decide between choosing a faster algorithm with a slower
retrieval time versus a slower algorithm with a faster retrieval time. This decision
might depend on multiple factors that we considered in this article, such as the query
load (number of buckets in the query), the query type (Range, Arbitrary, Connected
etc.), and the allocation scheme in use (RDA, Dependent Periodic, Orthogonal etc.).
Another trade-off to be considered is batching multiple requests and retrieving the
buckets all together versus retrieving the buckets of the queries one query at a time
as soon as they arrive. This is a harder decision compared to the first. First of all, it
is not easy to know when to stop batching and finding the retrieval schedule of the
batched queries. While increasing the batch size might be better for load balancing
of the disks, causing a better retrieval time, batching too many requests might create
a fairness issue by overly delaying some requests. Second, even after stopping the
batching process and starting the retrieval of batched queries, it might be better to
stop the retrieval at some point and come up with another retrieval decision for the
buckets that are left from the previous retrieval, plus the ones that are newly arrived.
Another fairness issue might be encountered if some buckets are again overly delayed.
As a first follow-up, we are planning to minimize the total response time of the system
by considering these trade-offs.

Other interesting future work we are planning to consider, is decreasing the
execution time of the Max-flow approach proposed in this article. The advantage
of the Max-flow approach is that it guarantees the optimal response time retrieval
schedule for a given query. Thanks to the binary capacity scaling technique, we could
decrease the execution time of the Max-flow approach to ∼50 msec for the retrieval
of ∼5000 buckets, requiring ∼10 microseconds of execution time per bucket. As a
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Fig. 19. Experiment 6, Algorithm-B vs. mf w/binary, RDA.

Fig. 20. Experiment 20, Arbitrary, Different Number of Sites, RDA, Load 1.

result of the experiments we performed, we found that the Max-flow approach yields
the smallest total time (retrieval+execution) for all queries compared to the other
algorithms and heuristics under the real-world workload of Microsoft’s Exchange
trace (see Figure 22). Since deciding the retrieval schedule is a time-critical issue, as
additional future work; we are planning to improve the execution time of the Max-flow
approach even further. In order to do that, we will first focus on integrated maxi-
mum flow algorithms instead of using the maximum flow as a black box technique.
Several different implementations of maximum flow can be considered here, such as
Ford-Fulkerson-based or Push-relabel-based implementations. Second, since current
storage arrays are powered with multicore processors, a multithreaded integrated
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Fig. 21. Experiment 20, 5 Sites, RDA, Synthetic Loads.

Fig. 22. Experiment 20, Arbitrary, Different Number of Sites, RDA, Load of the Exchange Trace.

maximum flow solution for the generalized retrieval problem might decrease the
execution time even further. There are multiple places where parallelization can be
applied. First of all, parallelization can take a place in the maximum flow calculation
itself where several parallel maximum flow algorithms have been proposed [Anderson
and Setubal 1992; Bader and Sachdeva 2005; Goldberg and Trujan 1988; Hong and
He 2011]. Second, parallelization can be performed in the binary capacity scaling
technique such that multiple threads might calculate the maximum flow of different
subranges of the whole range in parallel, to shrink the range faster.
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In summary, we believe that this article is an important milestone for solving many
interesting problems of new distributed, heterogeneous storage systems, and it opens
the way to interesting future work in this area of research.

7. CONCLUSION

In this article, we investigate the retrieval of declustered data from storage arrays and
we allow disks to be heterogeneous, to have initial loads, and network delays. We show
how to compute optimal response time retrieval and formulate the problem using LP
and maximum flow approaches. We also propose a low complexity online algorithm
to compute a retrieval schedule that does not guarantee the optimality of the result.
Experimental results using various replication schemes, query types, query loads, disk
specifications, site delays, and initial disk loads show that the replication scheme used
is important. Orthogonal allocation performs well in many scenarios. The max-flow
approach runs a few orders of magnitude faster than the LP model on average and
they both yield the optimal response time retrieval. Online algorithm has the fastest
execution time; however, it is generally slower than the max-flow approach when we
consider its retrieval performance.
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