
Exploiting Replication for Energy Efficiency of
Heterogeneous Storage Systems

Everett Neil Rush and Nihat Altiparmak

Department of Computer Engineering & Computer Science

University of Louisville, KY 40292, USA

{e.rush,nihat.altiparmak}@louisville.edu

Abstract—As a result of immense growth of digital data in
the last decade, energy consumption has become an important
issue in data storage systems. In the US alone, data centers
were projected to consume $4 billion (40 TWh) yearly electricity
in 2005. This cost had reached to $10 billion (100 TWh)
in 2011, and expected to be around $20 billion (200 TWh)
in 2016 by doubling itself every 5 years. In addition to the
economic burden on companies and research institutions, these
large scale data storage systems also have a negative impact on
the environment. According to the EPA, generating 1 KWh of
electricity in the US results in an average of 1.55 pounds of carbon
dioxide emissions. Considering a projected 200 TWh energy
requirement for 2016, energy-efficient data storage systems can
have a huge economic and environmental impacts on society. This
project exploits replication and heterogeneity existing in modern
multi-disk storage systems and proposes an energy-efficient and
performance-aware replica selection technique to reduce the
energy consumption of data storage systems without negatively
affecting their performance. Our proposed technique exploits
the difference between active and idle energy consumption in
heterogeneous disks holding the same replica and selects replicas
by balancing energy and performance.

Keywords-disk energy, replica selection, optimization

I. INTRODUCTION

Advances in computer technology have enabled the gen-

eration and storage of massive amounts of data resulting in

an increased energy consumption in large scale data storage

systems. The following quote from Eric Schmidt, Executive

Chairman and former CEO of Google, emphasizes the impor-

tance of energy conservation in storage systems dramatically:

“What matters most to the computer designers at Google is

not speed but power — low power, because data centers can

consume as much electricity as a city.” Current computer

technology provides various means of storing digital data.

Among them, Hard Disk Drives (HDD) and Solid State Drives

(SSD) are the most commonly used devices for permanent data

storage. HDDs are mechanical in nature and the motion of

the mechanical parts forms a significant portion of the energy

needs of an HDD. On the other hand, SSDs are fully electronic

and do not contain any moving parts; therefore, SSDs are

known to be more energy efficient compared to HDDs. In order

to achieve larger storage space, better performance, and data

reliability, modern data centers are large multi-disk storage

systems composed of storage arrays and clusters of computers.

Replication and heterogeneity are commonly encountered

in modern multi-disk storage systems. For instance, hybrid

arrays have received the most attention recently among all

storage arrays due to their balance of capacity, price, and

performance [1]. Replication is commonly utilized in stor-

age arrays through custom replication techniques or various

available RAID levels (RAID1/01/10) [2]. As well as hybrid

storage arrays, state-of-the-art distributed storage systems in

both high-performance computing and big-data processing

platforms generally include storage device heterogeneity since

such clusters generally evolve over time, as newer storage

devices are added to expand storage capacity and older or

failing storage devices are replaced. Various parallel file

systems including Ceph [3] and GPFS [4], distributed file

systems including GFS [5] and HDFS [6], and key-value stores

including Cassandra [7] and MongoDB [8] rely on replication

for scalability, availability, and reliability purposes. They all

divide data into disjoint regions called blocks (stripes/chunks),

create multiple replicas for each block (generally three), and

distribute them over storage nodes around the cluster.

In addition to the aforementioned benefits, replication has

a potential to reduce the energy consumption of the storage

system. In this paper, we exploit replication and heterogeneity

existing in modern multi-disk storage systems and propose

an energy-efficient replica selection technique without causing

a major performance degradation. Our proposed technique

exploits the difference between active and idle energy con-

sumption in heterogeneous disks holding the same replica

and performs the replica selection by balancing energy and

performance. The main contributions include:

• Formulating the energy-optimal replica selection in hetero-

geneous storage systems as an optimization problem and

solving it using linear programming techniques.

• Developing a low cost replica selection heuristic balancing

energy and performance.

• Providing an extensive performance evaluation of the ex-

isting and proposed algorithms on various realistic het-

erogeneous storage configurations using real-world storage

workloads, and investigating their performance compared

with optimal performance and energy values.

II. BACKGROUND AND RELATED WORK

A. Replica Selection Problem

Replica selection is an essential task of retrieving replicated

datasets, and efficient retrieval of replicated data from multiple

disks is a challenging problem. We are given a disk request

2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems

2375-0227/16 $31.00 © 2016 IEEE

DOI 10.1109/MASCOTS.2016.70

79

composed of multiple data blocks and each block can be

replicated among multiple disks. A retrieval schedule specifies

the replica to be selected for each block in the request and the

performance of this selection is determined by the response

time (latency) of the request. Response time of a disk request

is defined as the time elapsed to complete the request and it

can be divided into the following two sub-components:

• Service Time: The time the storage system spends servicing

the request, beginning with the start of the first block and

ending with completion of the last block of the request.

• Waiting Time: The elapsed time between the arrival of the

request and the beginning of the service, including the queue

wait time and the networking delay, if any.

Definition 1. Retrieval schedule of a disk request is

performance-optimal if the specified retrieval decision results

in the minimum response time.

B. Performance-Optimal Replica Selection

It is possible to achieve the performance-optimal retrieval

schedule of a request by running an optimization algorithm.

Chen and Rotem first formulated the replica selection problem

as a flow network in [9] and solved it in polynomial time using

max-flow techniques [10]. They assumed that all the disks are

identical and the waiting times of the disks are zero. Authors

in [11] generalized this problem and proposed a max-flow

solution considering storage system heterogeneity and variable

waiting times. This solution is further improved in [12–14]

using parallelization and adaptive retrieval techniques.

C. Existing Replica Selection Heuristics

Replica selection heuristics are commonly used in real

settings due to their simplicity. However, they do not guarantee

the optimal performance and generally assume that the storage

devices are homogeneous. Therefore, existing heuristics either

employ a static selection mechanism or focus on reducing the

waiting time of the requests by concentrating on the network

delay or the queue wait time.

Static Replica Selection: Such techniques direct the block

requests to a predefined replica called the primary replica [15].

This is a common approach in distributed systems imple-

menting a primary back-up protocol that require a strong

consistency model [16]. For instance, MongoDB implements

this strategy by default. Another example system following a

static replica selection strategy is [17], where the replicas are

placed to the disks in a round-robin fashion as in RAID 0, and

always the first replica is chosen in retrieval. The motivation

behind [17] is achieving a better load balancing.

Network-Aware Heuristics: Such heuristics are generally

preferred in geographically distributed systems. For instance,

HDFS applies a network-delay aware replica selection mech-

anism such that when a client issues an HDFS read request,

HDFS fetches the list of blocks and the locations of replicas

from the NameNode, orders the replicas of a block based

on their distance from the client, and selects the closest

replica [6]. Google File System (GFS) does not explicitly

describe the replica selection mechanism; however, it men-

tions that the read requests should be directed to the nearest

replica [5]. Although MongoDB performs a static selection by

default, it also provides an option for switching to a network-

aware heuristic that uses the round-trip network delay [8].

Load-Aware Heuristics: Load-aware heuristics are gener-

ally applied in centralized settings such as accessing a single

storage array or a cluster that is connected with high speed

interconnects where node-to-node network delays are less than

a millisecond. Therefore, such systems focus on improving the

load balancing of the disks. One common replica selection

technique is the shortest-queue-first algorithm [18] . It is

implemented in RAID levels including replication such as

RAID (RAID1/01/10), and in multimedia servers [19, 20]. In

order to decide the replica to be selected for each block, queue

lengths of the disks carrying a replica of that particular block

are compared, and the disk with the shortest queue length

(fewest number of blocks in its queue) is selected.

D. Energy Conservation Techniques for Storage Devices

Energy consumption of storage devices varies depending

on their operation mode. For instance, an HDD can be in

three different energy states: active, idle, and stand-by. It is

defined to be in an active state while performing a Read/Write

(R/W) operation, including the seek, rotational latency, and

data transfer. Idle state indicates that the disk is not servicing

a R/W operation; however, it remains spinning and ready to

immediately begin the next request. The disk controller also

remains active, but consumes less power because no data is

being transferred [21]. Similarly, SSDs can also be in active

or idle states; however, different than SSDs, HDDs are also

capable of a stand-by state in which the disk is spun down,

thus powering off the motor to save more energy.

Energy conservation techniques proposed in the literature

for HDD based storage systems generally focus on spinning

down the disks and switching to the stand-by mode when a

duration of inactivity is experienced. One way to increase the

inactivity period of a subset of disks in a multi-disk storage

system is grouping popular data in a set of active disks through

energy-efficient data (re)organization [22–27]. An alternative

approach to increase the inactivity period is exploiting the

existing replication and selecting the replicas from a set of

active disks [28–30]. However, spinning disks up and down

has several associated problems:

• Spin up/down increases wear and reduces lifetime. Well-

known HDD manufacturers such as Hitachi and Seagate rate

their HDDs for a maximum of 50,000 spin up/down cycles.

• Spin up is time consuming, increases the request response

time, and incurs a significant energy penalty. For instance,

IBM 36Z15 disk spends 10.9 sec. to spin up and this

operation consumes 135 Joules, ∼1800 times more energy

consumption compared to the average energy spent to re-

trieve a 4 KB block from the same device.

• In an enterprise setting, the workload is typically such that

a disk would not be idle long enough to benefit from such

energy savings [21].

80

TABLE I: Factory Specifications of Common Enterprise Disks

PA PI PΔ Avg. Seek Time Avg. Rotational Latency Transfer Rate EA EI EΔ

HDD (W) (W) (W) (ms) (ms) (MB/s) (mJ) (mJ) (mJ)
Hitachi C15K600 (15K SAS - 600GB) 7.5 5.8 1.7 2.9 2.0 271.0 36.9 28.5 8.4
Hitachi C10K1800 (10K SAS - 600GB) 6.2 4.3 1.9 3.8 2.85 247.0 41.3 28.7 12.6
Hitachi 7K6000 (7.2K SATA - 2TB) 9.1 7.1 2.0 7.6 4.16 227.0 107.2 83.6 23.6

PA PI PΔ Avg. Access Time Transfer Rate EA EI EΔ

SSD (W) (W) (W) (ms) (MB/s) (mJ) (mJ) (mJ)
Intel DC P3700 (PCIe - 400GB) 9.0 4.0 5.0 0.02 1800 0.20 0.09 0.11
Intel DC S3700 (SATA - 400GB) 5.2 0.6 4.6 0.05 300 0.33 0.04 0.29

III. ENERGY-AWARE REPLICA SELECTION

In this paper, we target multi-disk heterogeneous storage

systems involving replication and aim to decrease the energy

consumption of the storage system through an energy-aware

replica selection technique without spinning down the disks,

and affecting applications’ I/O performance significantly.

In Table I, we list the factory specifications of five hetero-

geneous disks (three HDDs and two SSDs) that are commonly

used in current enterprise storage settings. The list shows

that that different disks have different performance and power

consumption ratings including access time, transfer rate, active

power (PA), idle power (PI), and delta power (PΔ) rates.

Power rate and I/O performance together determine the energy

consumption of a disk to perform a specific I/O task. Using

these values, it is possible to calculate the active energy

(EA), idle energy (EI), and delta energy (EΔ = EA− EI)

consumption of a specific disk to perform an I/O task of size

b as follows:

{EA,EI,EΔ}HDD = {PA,PI,PΔ} · (tseek + trot +b/ttrans) (1)

{EA,EI,EΔ}SSD = {PA,PI,PΔ} · (taccess +b/ttrans) (2)

The formulas differ for SSDs and HDDs since SSDs do

not include an associated seek time (tseek) and rotational

latency (trot), instead they include a single access time (taccess).

However, transfer time (ttrans) is common in both devices. The

last three columns of Table I include these calculated EA, EI,

and EΔ values of disks as a result of performing a 4KB read

operation. As it is clear from the table, different disks consume

different amount of energy to perform the same I/O task, and

this difference can be exploited in the replica selection process

to reduce the energy consumption of the storage system.

Although choosing the replica from the disk causing the

smallest EΔ might seem like a reasonable solution at first, it

should be noted that such a naive technique may actually affect

the I/O performance negatively and cause more energy con-

sumption due to unbalanced loads on the disks, consequently

resulting in a larger idle energy consumption and longer

application I/O times. In addition, since applications running

in the system may take longer to terminate, energy consump-

tion of additional system resources (CPU/Memory/Network)

may also be increased. Therefore, in order to minimize the

energy consumption of a storage system, we minimize the

active energy consumption EA of disk requests, which is the

combination of idle and delta energy consumptions (EI+EΔ).

We define the energy-optimal retrieval as follows:

Definition 2. Retrieval schedule of a disk request is energy-

optimal if the specified retrieval decision results in the mini-

mum storage system energy consumption during its retrieval.

The notation used in this paper is described in Table II.

TABLE II: Notation

Notation Meaning

N Number of disks in the system
Q Number of blocks in the disk request (Query size in blocks)
r Replication factor

PA j Active power rate of disk j

PIj Idle power rate of disk j

PΔ j Delta (PA−PI) power rate of disk j

EA Total active energy consumed to retrieve the request
EI Total Idle energy consumed to retrieve the request
EΔ Total delta (EA−EI) energy consumed to retrieve the request
Cj Retrieval cost for disk j

Wj Waiting time for disk j

W Maximum waiting time; MAX{Wj}; j = 1, . . . ,N
Bi j 1 if block i of the request is retrieved from disk j; 0 otherwise

Lj Load of disk j for the request; ∑
Q
i=1 Bi j

S j Service time of disk j for the request
R j Response time of disk j for the request; R j =Wj +Sj

R Response time of the request
Ij 0 when Lj is 0; 1 otherwise
I 0 when R≤W ; 1 otherwise

A. Energy-Optimal Replica Selection

Energy-optimal replica selection in heterogeneous systems

can be formalized as an optimization problem as follows:

Minimize : EI +EΔ

Sub ject to :
N

∑
j=1

Bi j = 1; i = 1, . . . ,Q

L j =
Q

∑
i=1

Bi j

S j = L j ·Cj

EΔ =
N

∑
j=1

S j ·PΔ j

I j = 0→ L j = 0

R j = I j ·Wj +S j

R≥ R j; j = 1, . . . ,N

I = 0→ R≤W

EI = I · (R−W) · (
N

∑
j=1

PIj)

(3)

The objective function minimizes the active energy con-

sumption of the storage system (EA) during the retrieval

81

of a request, which is calculated as the summation of idle

energy consumption of all disks (EI) and the delta energy

consumption (EΔ) of the disks that are actively used in

retrieval. In order to achieve this objective, we use r ·Q+ 1

unique regular variables (Bi js and R) and N + 1 indicator

variables (I js and I). In addition to the regular and indicator

variables, Q+N + 2 regular constraints and N + 1 indicator

constraints are used in the formulation. Please note that PIjs,

PΔ js, Cjs, Wjs, and W are constants, and Ljs, S js, R js, EI,

and EΔ are not unique as they can be written in terms of Bi js.

The constraint ∑
N
j=1 Bi j = 1; i = 1, . . . ,Q ensures that every

block i is retrieved only from a single disk j. Service time

calculation shown in the formulation above (S j = Lj ·Cj)

simply uses an average access time value as the retrieval

cost of each block and multiplies the disk load (Lj) with this

retrieval cost; however, it can be adapted easily to include

the specific seek distance of the blocks for more accurate

calculation in HDDs. EΔ is calculated by multiplying the

service time S j of every disk j with its delta power rate PΔ j.

While calculating EI, it is important to subtract the maximum

waiting time W from the request response time R before

multiplying it with the idle power rate PI to eliminate the

reconsideration of overlapping idle energy consumptions of

consecutive requests. Finally, R j holds the response time of

each disk j considering its waiting time Wj and service time

S j, and the constraint R≥ r j for j = 1, . . . ,N guarantees that

the I/O response time R is minimized.

The indicator variable I ensures that the idle energy con-

sumption EI never becomes negative, and the indicator vari-

ables I j for every disk j ensure that the waiting time of a disk

is only considered if that disk is used in retrieval. In IBM

CPLEX solver, indicator constraints can easily be defined as:

I j = 0→ Lj = 0 (for every j) and I = 0→ R≤W .

Since the last constraint of the formulation:

EI = I · (R−W) · (
N

∑
j=1

PIj)

multiplies a variable (I) with another variable R, the formu-

lation is not linear in this form. However, it can easily be

converted into a linear form by introducing two large constants

(M1 and M2) and an intermediate variable (EI′) to the model,

and rewriting the definition of EI using the big-M method [31].

We define the intermediate value EI′ such that:

EI′ = (R−W)
N

∑
j=1

PIj

Then, EI can be defined using the big-M method as follows:

EI ≥ EI′+M1 · I−M1

EI ≤ EI′+M1−M1 · I

EI ≥−M2 · I

EI ≤M2 · I

If R > W (and I = 1), then the M1 terms of the first two

restrictions cancel, and only EI = EI′ is allowed. The last two

would give no restriction (−M2 ≤ EI ≤+M2). If R≤W (and

I = 0), then the last two only allow EI = 0 and the first two

give no restriction (EI′ −M1 ≤ EI ≤ EI′+M1). Therefore, EI

becomes (R−W)∑
N
j=1 PIj when R >W , and 0 otherwise, as

we wanted to achieve in the original non-linear description of

EI. Re-writing the definition of EI in a linear form using the

big-M method requires the use of one additional variable (EI′)

and two additional constraints (M1 and M2) as above.
The integer linear programming formulation presented

above guarantees the energy-optimal retrieval schedule, and

it can be solved using an LP solver such as IBM’s CPLEX;

however, its execution time would generally be unacceptably

high in a real world setting due to its NP-hard complexity [32].

Nevertheless, having an optimal solution is crucial for com-

parison and evaluation purposes of the heuristic solutions,

and to understand how much potential exists to improve the

heuristics even further.

B. Greedy-Energy with Load Balancing (GELB) Heuristic

In this section, we propose a low complexity greedy heuris-

tic called Greedy-Energy with Load Balancing (GELB) for

the energy-aware replica selection problem in heterogeneous

storage environments. A detailed description of the heuristic

is provided in Algorithm 1.

Algorithm 1 Greedy-Energy with Load Balancing (GELB)

Input: W,N,Q,r, replica to disk[],W [],C[],PΔ[],PI[]
Output: selection[]

1: idle end←W
2: for i← 1 to N do
3: load[i]← 0
4: for b← 1 to Q do
5: min cost← ∞

6: for c← 1 to r do
7: d ← replica to disk[b,c]
8: idle extension←W [d]+(load[d]+1) ·C[d]− idle end

9: if idle extension > 0 then

10: cost← PΔ[d] ·C[d]+ idle extension ·

(
N

∑
i=1

PI[i]

)

11: else
12: cost← PΔ[d] ·C[d]
13: if cost<min cost then
14: min cost← cost

15: choice← d
16: selection[b]← choice

17: load[d]++
18: disk end←W [choice]+ load[choice] ·C[choice]
19: if disk end> idle end then
20: idle end← disk end

The proposed heuristic is not only considering the energy

efficiency of the storage system, but also considers appli-

cations’ I/O performance. In order to consider the energy

efficiency, it includes the delta energy consumption in the

replica selection cost function as in line 12. However, in

order to eliminate extensive queue length in the lowest energy

disk and possible I/O performance degradation, it additionally

includes the idle energy consumption of all disks in the cost

function of that replica selection when the candidate selection

causes an increased waiting time W as in line 10. At the

end, it chooses the replica with the lowest cost as in line 16.

The function replica_to_disk[b,c] returns the disk holding

the replica c of the block b, and load[d] holds the number

of blocks scheduled for disk d. The heuristic has the time

complexity of O(rQ).

82

IV. EVALUATION

In this section, we evaluate the performance of the existing

and the proposed replica selection algorithms compared to the

optimal performance and the energy values calculated using

the performance-optimal and the energy-optimal solutions.

A. Experimental Setup

We perform trace-based simulations driven by real world

storage workloads using two realistic heterogeneous storage

configurations and various replication factors.

1) Disk Configurations: Motivated by the EMC VNXe3200

hybrid storage system’s advertised heterogeneous disk config-

urations, we selected two interesting heterogeneous configura-

tions as shown in Table III. We used the specific disk models

provided in Table I in these configurations. We determined the

number of disks for each device type in proportion with EMC’s

provided storage capacity for that particular device type. In

addition, we also share EMC’s advertised total capacity and

dollar value for each configuration.

TABLE III: Heterogeneous Storage Configurations
Config. 1 Config. 2

Disk Type 21 TB ($19k) 33 TB ($42k)
7.2k HDD 12 (80%) 24 (64.9%)
10k HDD — 11 (29.7%)
15k HDD 3 (20%) —

SATA SSD — 1 (2.7%)
PCIe SSD — 1 (2.7%)

Total Disks: 15 disks 37 disks

2) Workloads: We perform evaluation using two popular

real world storage workloads including block level I/O re-

quests of an online transaction processing applications (OLTP)

and a web search engine. These workloads are publicly

distributed via the online trace repositories provided by the

Storage Networking Industry Association (SNIA) [33] and

University of Massachusetts Amherst (UMASS) [34]. Specific

details of these workloads are as follows:

• TPC-E: TPC-E is and OLTP benchmark simulating the

workload of a brokerage firm. TPC-E is the successor of

TPC-C, its transactions are more complex than those of

TPC-C, and they more closely resemble modern OLTP trans-

actions. The TPC-E trace covers 84 minutes of workload

taken on 10/18/2007 and broken into 6 intervals of 10-16

minutes. We used the TPC-E trace provided by SNIA, which

is originally generated by Microsoft.

• WebSearch: The second workload we use is WebSearch,

which is taken from a popular search engine. We used the

WebSearch1 trace provided by UMASS.

Trace statistics including average/maximum request sizes

and average request interarrival times are provided in Table IV.

TABLE IV: Trace Statistics
Trace Avg/Max Req. Size (KB) Avg. Interarrival (msec)

TPC-E 8.43 / 1024 0.04
WebSearch1 15.15 / 1111 2.98

3) Data Placement and Replication: Since the storage

traces do not disclose the replica placement details, we need

to use a replicated data placement (declustering) strategy to

distribute the replicas of the requested blocks in the workloads

to the available disks in the system. For this distribution,

we use Random Duplicate Allocation (RDA)[35] that stores

a block into r disks chosen randomly from all the disks

in the system. Our motivation behind choosing this replica

placement strategy is that RDA performs equally well for

all request/query types while certain allocation strategies are

generally optimized for specific query types. For instance,

while orthogonal allocations [36] generally perform better for

arbitrary queries, periodic allocation strategies [37] are more

suitable for range queries. In order to observe the effect of

replication factor, we also performed the experiments using

various replication factors of r = 2,3,4,5,6.

B. Algorithms

We implemented the following algorithms for evaluation:

• Static is a simple heuristic solution following the idea of

static replica selection described in Section II-C such that the

predefined primary replica of each block is always chosen

in the retrieval schedule.

• Shortest-Queue-First is a load-aware heuristic described in

Section II-C such that the replica stored in the disk with the

lowest number of blocks in its queue is chosen for retrieval.

• Lowest-Energy-First is a greedy heuristic choosing the

replica from the disk causing the smallest EΔ energy con-

sumption without considering the I/O performance.

• Performance-Optimal is the max-flow based performance-

optimal algorithm described in Section II-B.

• Energy-Optimal is the integer linear programming based

energy-optimal solution described in Section III-A.

• GELB is our proposed heuristic solution balancing energy

and performance as described in Section III-B.

C. Experimental Results

Figures 1 and 2 present the energy consumption (Figures

(a) and (b)) and I/O performance (Figures (c) and (d)) of the

heuristics compared with the optimal solutions for config. 1

and config. 2, respectively. In these graphs, achieving 1x on

the y-axis indicates that the corresponding heuristic performs

as good as the the optimal solution, and having a larger

y value indicates the deviation from the optimal value as

well as indicating the remaining potential to improve the

corresponding heuristic. Compared with the energy-optimal

solution, performance-optimal solution, and various existing

replica selection techniques, our analysis shows that the

proposed GELB heuristic outperforms the existing heuristic

solutions and achieves performance close to the optimal solu-

tions. Specifically, GELB performs within 24% of the energy-

optimal solution without causing significant I/O performance

degradation over the performance-optimal solution.

V. CONCLUSIONS

In this paper, first we formulate the energy-optimal replica

selection as an optimization problem and solve it using linear

programming techniques. Next, we propose the low cost

GELB heuristic that balances the energy consumption of the

83

1

10

static sqf lef gelb

C
om

pa
ris

on
 w

ith
 E

ne
rg

y-
O

pt
im

al
TPC-E (Config. 1) - Energy

Replicas
2
3
4
5
6

8.289
5.480

7.750

1.185

(a) TPC-E - Energy

1

10

static sqf lef gelb

C
om

pa
ris

on
 w

ith
 E

ne
rg

y-
O

pt
im

al

WebSearch (Config. 1) - Energy

Replicas
2
3
4
5
6

7.781

3.509

7.490

1.239

(b) WebSearch - Energy

1

10

static sqf lef gelb

C
om

pa
ris

on
 w

ith
 P

er
fo

rm
an

ce
-O

pt
im

al

TPC-E (Config. 1) - Response Time

Replicas
2
3
4
5
6

1.524 1.539

4.134

1.001

(c) TPC-E - Performance

1

10

100

1000

10000

static sqf lef gelb

C
om

pa
ris

on
 w

ith
 P

er
fo

rm
an

ce
-O

pt
im

al

WebSearch (Config. 1) - Response Time

Replicas
2
3
4
5
684.394

1.262

512.733

1.010

(d) WebSearch - Performance

Fig. 1: Config. 1

1

10

100

static sqf lef gelb

C
om

pa
ris

on
 w

ith
 E

ne
rg

y-
O

pt
im

al

TPC-E (Config. 2) - Energy

Replicas
2
3
4
5
6

24.331

4.310

7.277

1.041

(a) TPC-E - Energy

1

10

100

static sqf lef gelb

C
om

pa
ris

on
 w

ith
 E

ne
rg

y-
O

pt
im

al
WebSearch (Config. 2) - Energy

Replicas
2
3
4
5
6

26.664 21.824

8.202

1.089

(b) WebSearch - Energy

1

10

100

1000

10000

static sqf lef gelb

C
om

pa
ris

on
 w

ith
 P

er
fo

rm
an

ce
-O

pt
im

al

TPC-E (Config. 2) - Response Time

Replicas
2
3
4
5
6

1251.391

1.356

57.119

1.003

(c) TPC-E - Performance

1

10

100

static sqf lef gelb

C
om

pa
ris

on
 w

ith
 P

er
fo

rm
an

ce
-O

pt
im

al

WebSearch (Config. 2) - Response Time

Replicas
2
3
4
5
67.151

4.090

1.631

1.018

(d) WebSearch - Performance

Fig. 2: Config. 2

storage system and the I/O performance of applications. Com-

pared with the energy-optimal solution, performance-optimal

solution, and various existing replica selection techniques, our

analysis shows that the proposed low-cost GELB heuristic

outperforms the existing solutions and performs up to 24%

within the optimal energy consumption while not causing a

significant I/O performance degradation.

REFERENCES

[1] E. Burgener et al., Worldwide All-Flash Array and Hybrid Flash Array

20142018 Forecast and 1H14 Vendor Shares, IDC, Jan 2015.
[2] D. A. Patterson et al., “A case for redundant arrays of inexpensive disks

(raid),” ser. SIGMOD ’88. ACM, 1988, pp. 109–116.
[3] S. A. Weil et al., “Ceph: A scalable, high-performance distributed file

system,” ser. OSDI ’06. USENIX, 2006, pp. 307–320.
[4] F. Schmuck et al., “Gpfs: A shared-disk file system for large computing

clusters,” ser. FAST ’02. USENIX, 2002.
[5] S. Ghemawat et al., “The google file system,” ser. SOSP ’03. ACM,

2003, pp. 29–43.
[6] K. Shvachko et al., “The hadoop distributed file system,” ser. MSST

’10. IEEE, May 2010, pp. 1–10.
[7] A. Lakshman et al., “Cassandra: A decentralized structured storage

system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40, Apr. 2010.
[8] K. Chodorow et al., MongoDB: The Definitive Guide, 1st ed. O’Reilly

Media, Inc., 2010.
[9] L. T. Chen et al., “Optimal response time retrieval of replicated data,”

ser. SIGMOD/PODS ’94. ACM, 1994, pp. 36–44.
[10] L. R. Ford et al., “Maximal Flow through a Network.” Canadian Journal

of Mathematics, vol. 8, pp. 399–404, 1956.
[11] N. Altiparmak et al., “Generalized optimal response time retrieval of

replicated data from storage arrays,” ACM Transactions on Storage,
vol. 9, no. 2, pp. 5:1–5:36, Jul. 2013.

[12] N. Altiparmak et al., “Integrated maximum flow algorithm for optimal
response time retrieval of replicated data,” in 41st International Con-
ference on Parallel Processing (ICPP 2012), Pittsburgh, Pennsylvania,
September 2012.

[13] N. Altiparmak et al., “Continuous retrieval of replicated data from
heterogeneous storage arrays,” in 22nd IEEE International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommuni-

cation Systems (MASCOTS 2014), Paris, France, September 2014.
[14] N. Altiparmak et al., “Multithreaded maximum flow based optimal

replica selection algorithm for heterogeneous storage architectures,”
IEEE Transactions on Computers, vol. 65, no. 5, May 2016.

[15] P. A. Alsberg et al., “A principle for resilient sharing of distributed
resources,” ser. ICSE ’76. IEEE, 1976, pp. 562–570.

[16] N. Budhiraja et al., “Distributed systems (2nd ed.).” ACM Press and
Addison-Wesley Publishing Co., 1993, pp. 199–216.

[17] S. W. Son et al., “Reliable mpi-io through layout-aware replication,” ser.
SNAPI ’11, Denver, CO, 05/2011 2011.

[18] W. H. Tetzlaff et al., Block allocation in video servers for availability
and throughput, IBM US Research Centers, 1996.

[19] J. R. Santos et al., “Comparing random data allocation and data striping
in multimedia servers,” ser. SIGMETRICS ’00. ACM, 2000, pp. 44–55.

[20] R. Muntz et al., “A parallel disk storage system for realtime multimedia
applications,” International Journal of Intelligent Systems, vol. 13, 1998.

[21] T. Bostoen et al., “Power-reduction techniques for data-center storage
systems,” ACM Comput. Surv., vol. 45, no. 3, pp. 33:1–33:38, Jul. 2013.

[22] D. Colarelli et al., “Massive arrays of idle disks for storage archives,”
ser. SC ’02. IEEE Computer Society Press, 2002, pp. 1–11.

[23] E. Pinheiro et al., “Energy conservation techniques for disk array-based
servers,” in ACM ICS 25th Anniv. Volume. ACM, 2014, pp. 369–379.

[24] Q. Zhu et al., “Hibernator: Helping disk arrays sleep through the winter,”
SIGOPS Oper. Syst. Rev., vol. 39, no. 5, pp. 177–190, Oct. 2005.

[25] T. Xie, “Sea: A striping-based energy-aware strategy for data placement
in raid-structured storage systems,” IEEE TC, vol. 57, no. 6, Jun. 2008.

[26] E. Otoo et al., “Dynamic data reorganization for energy savings in disk
storage systems,” ser. SSDBM’10, 2010, pp. 322–341.

[27] Y. Chai et al., “Efficient data migration to conserve energy in streaming
media storage systems,” IEEE TPDS, vol. 23, no. 11, Nov 2012.

[28] E. Pinheiro et al., “Exploiting redundancy to conserve energy in storage
systems,” SIGMETRICS Perform. Eval. Rev., vol. 34, no. 1, Jun. 2006.

[29] J. Kim et al., “Using replication for energy conservation in raid systems.”
in PDPTA. CSREA Press, 2010, pp. 703–709.

[30] J. C.-Y. Chou et al., “Exploiting replication for energy-aware scheduling
in disk storage systems,” IEEE TPDS, vol. 26, no. 10, Oct. 2015.

[31] W. Winston et al., Operations Research: Applications and Algorithms.
Thomson Brooks/Cole, 2004.

[32] R. M. Karp, “Reducibility among combinatorial problems,” Complexity

of Computer Computations, vol. 40, no. 4, pp. 85–103, 1972.
[33] SNIA IOTTA Repository, Storage Networking Industry Association,

http://iotta.snia.org.
[34] UMass Trace Repository, University of Massachusetts Amherst, http://

traces.cs.umass.edu/index.php/Storage/Storage.
[35] P. Sanders et al., “Fast concurrent access to parallel disks,” in 11th ACM-

SIAM Symposium on Discrete Algorithms, 2000.
[36] A. S. Tosun, “Replicated declustering for arbitrary queries,” in 19th ACM

Symposium on Applied Computing, March 2004, pp. 748–753.
[37] N. Altiparmak et al., “Equivalent disk allocations,” IEEE Trans. on

Parallel and Dist. Systems, vol. 23, no. 3, pp. 538–546, March 2012.

84

