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Abstract

Denial of Service (DoS) attacks on a computer system or

network cause loss of service to users typically by flooding a

victim with many requests or by disrupting the connections

between two machines. Although significant amount of

work has been done on DoS attacks, DoS attacks on stream-

ing video servers were not investigated in detail. In this pa-

per, we investigate DoS resilience of Real Time Streaming

Protocol (RTSP). We show that by using a simple command

line tool that opens a large number of RTSP connections, we

can launch DoS attacks on the server and the proxy. We dis-

cuss in detail how the CPU and the memory resources are

affected by the attacks. We observe that, with the DoS attack

we launch, clients can also keep the connections alive for

a long period and maintain the resources allocated at the

server. We propose a lightweight dynamic detection frame-

work for the RTSP based DoS attacks.

1 Introduction

Multimedia streaming is real-time transmission of stored

media, where the media content is not downloaded in full,

but is played out while parts of the content are being re-

ceived and decoded. Due to its real-time nature, there are

timing constraints and the media must be played out con-

tinuously. Real Time Streaming Protocol (RTSP) is the

standard protocol for a client to interact with the streaming

server in order to request and control the streaming of a me-

dia. Common streaming servers include Darwin Streaming

Server (DSS) from Apple and Helix DNA Streaming Server

(HSS) from Real Networks.

Denial of Service (DoS) is an attack on a computer sys-

tem or network that causes a loss of service to users typi-

cally by flooding a victim with many requests or by disrupt-

ing the connections between two machines thereby prevent-

ing access to service. A DoS attack can be either a single-

source attack, originating at only one host, or multi-source,

where multiple hosts coordinate to flood the victim with at-

tack packets. The latter is called a Distributed Denial of

Service (DDoS) attack. Common forms of DoS attack are

SYN attack, Smurf attack, Buffer Overflow attack, Teardrop

attack and internet worms. Detection of DoS attacks can

be done by tracing back towards the source of the DoS at-

tack [9] and by identifying the network path traversed by

the attack traffic [15]. Several approaches for protection

against DoS attacks are proposed [16, 17] including proba-

bilistic approaches [1, 8] that reduce the probability of DoS

attacks.

Streaming video servers are more vulnerable against

DoS attacks since they allocate a lot of resources up front.

Examination of the source code shows that for a single me-

dia requested, DSS allocates 5-6 MBytes of shared buffer

and 128Kbyte to 1 Mbyte of private buffer. Shared buffer

is used for caching purposes and private buffer is unique to

each connection. The nature of DoS attacks on streaming

servers are different as well. Although attacks such as SYN

attack can be launched against streaming servers, attacks

unique to streaming servers are at the application level and

are launched after the Transmission Control Protocol (TCP)

connection has been established. Attacks can use RTSP to

force the server out of resources by sending large number of

streaming requests through an attack tool instead of a media

player. In addition, by sending periodic heartbeat messages,

the tool can force the server to maintain memory and other

resources already allocated.

Contributions of this work are as follows:

• We show that by using a simple tool, it is possible

to open hundreds of RTSP connections from a single

client to streaming servers.

• We investigate the effect of large number of connec-

tions from a single client on the resources of streaming

servers and proxies.

• We show that streaming servers allow multimedia

players to send some sort of heartbeat messages to

keep connections alive.

• We propose a solution that can detect the attacks while

differentiating Network Address Translation (NAT)

devices and streaming proxies from malicious users.
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The rest of the paper is organized as follows. In section 2

we briefly describe the RTSP. We discuss attack framework

in section 3 and experimental results in section 4. We de-

scribe how RTSP connections can be kept alive in section 5.

Detection of attacks are discussed in section 6. Finally, we

conclude with section 7.

2 RTSP Protocol

RTSP is an application level protocol to control the de-

livery of data with real-time properties. RTSP enables con-

trolled, on-demand delivery of real-time data, such as audio

and video. Delivered data could be live or stored and can

be delivered over TCP, UDP or multicast UDP. RTSP es-

tablishes and controls single or several time-synchronized

streams of continuous media. However, it does not typi-

cally deliver the streaming data itself. It behaves like a net-

work remote control for multimedia servers. It is similar

to HTTP protocol in syntax and operation with some ma-

jor differences such that RTSP is a stateful protocol while

HTTP is stateless. Besides, RTSP maintains session IDs to

keep track of each client. Readers are directed to [12] for

more information about RTSP.

3 Attack Framework

In this section, we discuss the attack framework we used

including tools to open multiple RTSP connections from a

single client, streaming servers, streaming proxies, testbed,

and the tools to monitor resource usage.

3.1 Opening Multiple RTSP Connections
openRTSP [10] is an open source, command line tool

that can be used to open, stream, receive, and record media

streams that are specified by an RTSP URL (begins with

rtsp://). The program opens the given URL with proper

RTSP requests, retrieves the Session Description for each

audio and video sub-sessions, and sets up and plays the sub

sessions. In our experiments, we used the following com-

bination of options for openRTSP: openRTSP -c -r -p 6666

<RTSP URL>. In this command, -c option plays the me-

dia continuously and -r option with -p option enables us to

redirect the stream to a specified port. Since no application

is attached to the port 6666, the data sent by the server is

ignored by the client.

3.2 Streaming Servers and Proxies Used
In our experiments, we used two open source stream-

ing server products; Apple’s Darwin Streaming Server

(DSS) [3] and RealNetworks’ Helix DNA Streaming Server

(HSS) [6] together with their proxy servers; Darwin Stream-

ing Proxy (DSP) [2] and Helix Streaming Proxy (HSP) [11].

We chose DSS and HSS because of their open-source and

platform independent features; however, since RTSP is the

standard protocol that streaming servers implement and our

attack is based on RTSP, other streaming servers are also

expected to be vulnerable.

3.3 Testbed

We used a testbed consisting of six machines; two

streaming servers, two streaming proxies, and two clients

connected using two Gigabit Ethernet switches. The testbed

is given in Figure 1. A separate switch is used for each

client-proxy-server setup. Servers have Dual Pentium 4

3.2Ghz CPUs, 2GB memory and an Intel Gigabit Ethernet

connection running on Ubuntu 7.10. Proxies have a Pen-

tium 4 3GHz CPU, 2GB memory and a Broadcam gigabit

Ethernet connection running on Ubuntu 7.10. DELL Pow-

erConnect 5212 is used as a gigabit Ethernet switch.
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Figure 1. Testbed Used for Experiments

3.4 How to Monitor Resource Usage

We used SYSSTAT [13] tools to monitor CPU and mem-

ory use of proxies and servers. In our experiments, we

used PIDSTAT tool of SYSSTAT. PIDSTAT is capable of

monitoring each individual task in Linux kernel when in-

formation about specific task activities are provided using

its flags. For our memory experiments, we used -r flag of

PIDSTAT and collected the data of physical memory used

by each specific task. For the CPU experiments, we used -u

flag to collect the total percentage of CPU used by the task.

4 Experimental Results

We have experimental results using a single client for

each experiment. The client opens multiple connections to

the streaming proxy or the streaming server depending on

whether a streaming proxy is used or not. We focused on

memory and CPU usage and investigated how they differ

depending on the number of the parameters. We are also

interested in how the use of streaming proxy affects the ex-

perimental results. To include this we have experimental re-

sults for two settings; first setting has a client and a stream-

ing server, second setting has a client, a streaming proxy,

and a streaming server.

We used 25 movie clips in our experiments and have 4

traces. In each trace, we streamed total of 200 movies con-

tinuously. In trace1, the same movie is streamed 200 times.

In trace2, 5 different movies are streamed and this is re-

peated 40 times. In trace3, 10 different movies are streamed

and this is repeated 20 times. In trace4, 25 different movies

are streamed and this is repeated 8 times. The goal in using



different traces is to see how caching affects the results. We

varied the delay between opening two successive stream-

ing sessions to see how the delay affects the experimental

results. We set the delay to 30, 60, 120 and 300 seconds.

We also have experimental results with large number of re-

quests for 0 seconds delay.

We next give a brief summary of experimental results.

We put together a set of graphs that are interesting for our

purpose. At the end of each experiment, we kill all the

RTSP connections opened to release the resources held.

This can be observed as a drop at the end of some graphs

if OS has enough time to release the resources during the

experiment. Note that the results are obtained using only a

single client opening 200 connections for investigation pur-

poses; however, opening more number of connections from

multiple clients at the same time as in DDoS attack scenario

will make the attack severe.

4.1 Streaming without Proxy

• Memory Use: When movies are streamed with 30 sec-

onds delay between them, the memory use for all the

traces is shown in Figure 2. A single client can force

DSS (a) to use up to 120MB of memory and HSS (b)

to use up to 170MB of memory. When the movies

are streamed with different delays, we see that mem-

ory consumption depends on the delay between suc-

cessive requests. For trace2 this can be seen in Fig-

ure 3. Besides, peak memory use for DSS increases as

large number of different movies are streamed. This

can be seen in Figure 4(a) for trace4. DSS memory

consumption jumps to 140MB in this case while HSS

memory consumption remains the same in Figure 4(b).

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  1000  2000  3000  4000  5000  6000  7000

M
e

m
o

ry
 U

s
e

d
 (

K
B

y
te

s
)

Time (seconds)

Darwin Experiment

trace1
trace2
trace3
trace4

(a) DSS

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 0  1000  2000  3000  4000  5000  6000  7000

M
e

m
o

ry
 U

s
e

d
 (

K
B

y
te

s
)

Time (seconds)

Helix Experiment

trace1
trace2
trace3
trace4

(b) HSS

Figure 2. Memory, all traces, 30 sec. delay
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Figure 3. Memory, trace2, all delays

• CPU Use: When movies are opened with 30 seconds

delay between them, the CPU utilization for trace4 is

shown in Figure 5. A single client can force DSS (a)
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Figure 4. Memory, trace4, all delays

to use up to 50% of the CPU and can force HSS (b) to

use up to 55% of the CPU.
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Figure 5. CPU, trace4, 30 sec. delay

4.2 Streaming with Proxy

• Memory Use: For trace4, memory consumptions of

DSP and DSS are shown in Figure 6(a) and Figure 6(b)

respectively. Using the proxy slightly reduces the

memory used by the server for some traces but does

not have a major effect in general. DSP has minimal

memory use since it does not apply any caching. Same

data for Helix is shown in Figure 7. HSP (a) reduces

the memory consumption of HSS (b) dramatically but

HSP uses almost 90% of the memory used by the HSS

now.
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Figure 6. Memory, DSP and DSS, trace4
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Figure 7. Memory, HSP and HSS, trace4

DSP and DSS memory consumption when movies

are streamed with 30 seconds delay is shown in Fig-

ure 8(a) and Figure 8(b) respectively. Since DSP has



no caching ability, the results for the DSS are similar

to the no-proxy case as in Figure 2. DSP uses only

4.5MB of memory on its peak. Same data for Helix is

shown in Figure 9. Peak memory use for HSS (b) re-

duces from 170MB to 100MB with the HSP. However,

HSP (a) uses up to 95MB of memory.
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Figure 8. Memory, DSP and DSS, 30 sec.
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Figure 9. Memory, HSP and HSS, 30 sec.

• CPUUse: When movies are streamed with 30 seconds

delay between them, the CPU utilization for trace4

for DSP and DSS is shown in Figure 10(a) and Fig-

ure 10(b) respectively. A single client can force DSP

to use almost 100% CPU and use up to 50% of the DSS

CPU. Same data for Helix is shown in Figure 11. CPU

utilization is less than 10% for the HSP (a) and similar

to the non-proxy case for the HSS (b).
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Figure 10. CPU, DSP and DSS, trace4
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Figure 11. CPU, HSP and HSS, trace4

4.3 Large Number of Sudden Connections
We investigated how CPU and memory use change when

a large number of connections are opened with 0 delay. DSS

memory use for trace4 with and without DSP are shown

in Figure 12(a) for 1000 sudden connections. Memory use

for DSS is higher when DSP is used. The reason for this

is because of the number of connections opened. Without

DSP, DSS opened 183 connections. However, DSS was able

to open 510 connections with DSP. Without DSP, DSS gave

453 Not EnoughBandwidth error as a response to the RTSP-

Describe request of the client and DSS could not open the

connection. This is why the number of connections is lower

without DSP.
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Figure 12. 1000 Connections, 0 delay

Same data for Helix is shown in Figure 12(b). Memory

use without HSP is higher in this case as expected. When

1000 connections are requested at the same time, HSS was

able to open about 900 of them for a short time period. But

then number of connected clients are declined to 100. This

was because of the bandwidth availability of HSS which is

connected to a 1Gbps switch. In other words, HSS was able

to accept 900 of 1000 requests but when it starts streaming,

due to bandwidth limitation it drops the number of clients

to about 100. Besides bandwidth, we observed that HSS

could not maintain connections because after a while it run

out of file descriptors and gave the error open() failed with

too many open files for each connection request. When we

conduct the same experiment with HSP in front of the HSS,

the number of clients dropped to about 300. This was be-

cause of HSP’s limitation on bandwidth. So, one out of 3

requests is denied by the HSP in this experiment.

4.4 Discussion
In this section, we will share some observations we made

out of the experimental results given above. First of all,

Figure 2(a) shows that in non-proxy case streaming differ-

ent movies increases the memory use of Darwin Stream-

ing Server although it does not have much effect on Helix

Streaming Server in Figure 2(b). We can also see the in-

cremental effect of streaming different movies on the mem-

ory use of Darwin Streaming Server from Figure 3(a) and

Figure 4(a). In Figure 3(a), the peak memory use of Dar-

win Streaming Server is 80MB when it is 140MB in Fig-

ure 4(a). However, the results for Helix Streaming Server

in Figure 3(b) and Figure 4(b) are again similar without

depending on the content of the request. Besides, Helix

Streaming Server uses about 40% more memory than Dar-

win Streaming Server for trace4 and nearly 4 times more

memory for trace1 in Figure 2. These results clearly show



that Darwin Streaming Server uses some kind of a caching

mechanism to reduce its memory use and as a result re-

quires less memory than Helix Streaming Server in general.

On the other hand, the situation is exactly opposite for their

proxies. We see from Figure 8(b) and Figure 2(a) that using

proxy for Darwin Streaming Server does not really effect its

memory use, however; Figure 9(b) and Figure 2(b) clearly

show that the memory use of Helix Streaming Server de-

creases nearly 45% in the existence of proxy. In addition to

this, the peak memory use of Darwin proxy is about 4.5MB

in Figure 8(a) when it is nearly 100MB for Helix proxy in

Figure 9(a). As a consequence, we can state that now, He-

lix proxy uses some kind of a caching mechanism to help

its streaming server. The proxy and the server of Helix ba-

sically share the total memory usage of the server alone in

the non-proxy case. In summary, caching is applied in the

server side for Darwin while it is on the proxy side for He-

lix. In addition to these, although Darwin proxy does not

have any caching mechanism, section 4.3 shows that using

a streaming proxy in high load enables both of the servers

to handle more number of connections by providing a better

service to their clients.

5 How to keep connections alive

In addition to opening a large number of RTSP connec-

tions from a single client, a client can also keep the connec-

tions alive for a long period and maintain the allocated re-

sources at the server. RTSP connections have a default time-

out value of one minute. However, server can set a different

timeout value in Session Response Header. Server needs

”wellness” information from clients to keep the connection

alive within this timeout. If the server does not receive any

keep-alive packets such as RTCP reports or RTSP com-

mands (GET PARAMETER, SET PARAMETER or OP-

TIONS) from the client, it terminates the connection and

releases the resources reserved for that client.

We have used several media players to establish stream-

ing sessions with DSS and HSS, and analyzed the mes-

sages exchanged between client and server using the wire-

shark 1 tool. HSS declares its timeout value in SETUP re-

sponse, but DSS does not reveal its timeout value in RTSP

responses; so clients have to keep connection alive with

RTCP reports. openRTSP sends RTCP report messages to

server with about 4 to 6 second intervals to keep the session

alive. Similarly, VLC Media Player also uses RTCP report

messages instead of sending RTSP methods. Since Real

Player is implemented by Real Networks and HSS defines

its timeout value in the SETUP response header, Real Player

prefers to send OPTIONS method to HSS every half of the

timeout seconds if there is no other request sent during that

time. QuickTime Player is Apple’s media player and it im-

plements RTCP RR (Receiver Report) messages for keep-

1http://www.wireshark.org

ing the connection alive. DSS sends RTCP SR (Sender

Report) messages to client and QuickTime player replies

to those messages, consequently connection between client

and server does not time out.

6 Detection of Attacks

DoS attacks in streaming servers differ from the usual

DoS attacks by its nature. Most of the known DoS attacks

take place during the TCP connection establishment pro-

cess such as SYN flood attack, which is an attempt to open

so many TCP connections by sending TCP SYN packets to

the target system. However, DoS attacks unique to stream-

ing servers take place at the application level. In SYN flood,

since the connection does not have to be established fully, IP

spoofing is a common approach used by attackers and obvi-

ously, IP spoofing makes the detection of the attacker more

complicated. In streaming servers, a unique way to attack

is opening and maintaining so many RTSP connections in

order to make use of server’s resources excessively. For this

reason, an attacker first has to establish a TCP, then an RTSP

connection with a legitimate IP address to be able to receive

the packets sent from the server during the communication

process. Therefore, IP spoofing is not an option.

DoS attacks unique to streaming servers can be elimi-

nated by enforcing an authentication policy such that each

client has to have a legitimate account before streaming a

media. However, enforcing authentication is not practical

for streaming servers because of the overhead it brings on

the client and on the server side. First of all, signing up re-

quirement to stream a media is inconvenient for the client.

Besides the inconvenience, authentication will bring the pri-

vacy concerns with it such that most of the clients will be

uncomfortable with the idea of being monitored. Secondly,

handling the user accounts will cause an extra overhead on

the server side by keeping up with users and ensuring their

privacy. Therefore, our proposed solution works without

the requirement of user authentication.

Our framework uses a Counting Bloom Filter, a

NAT/Proxy/ Single User Detector and a Delta Queue

structure. Counting Bloom Filter is used to maintain

the number of connections opened by each IP address.

NAT/Proxy/Single User Detector is used to differentiate the

client IP address whether it belongs to a NAT device, a

streaming proxy or a single user. And finally, Delta Queue

is used to check the expiration time of each connection in

order to prevent keep alive attack explained in section 5. As

in the attack case, our detection scheme is also based on

RTSP and expected to work with any streaming server not

depending on any implementation details.

6.1 NAT/Proxy/Single User Detector

One of the challenges in detection is how to handle

streaming proxies and Network Address Translation (NAT)

devices. If a client uses a streaming proxy to connect to a



streaming server, streaming server cannot see the IP address

of the client since proxy replaces client’s IP address with its

own IP address. In other words, streaming server sees the

IP address of the proxy in the case of proxy usage. In order

to handle multiple clients from a streaming proxy, a higher

connection limit should be set for the proxies. Similarly,

NAT devices allow multiple clients to use the same IP ad-

dress by replacing clients’ IP addresses with its own. As in

the proxy case, a higher connection limit should be set for

NAT devices as well. First of all, we will explain how the

detection of NAT devices work and then we will discuss the

detection of streaming proxies. If an IP address is not clas-

sified as either a NAT device or a streaming proxy, it will be

assumed to be a single user.

6.1.1 NAT Device Detection
For this purpose, we have a previous research focused on

approximating the number of machines behind a device that

does network address translation [14]. We use TCP times-

tamp option and clustering to identify the approximate num-

ber of computers behind a NAT device. Timestamp op-

tion includes current timestamp of the machine in the TCP

packet, which is incremented in certain periods by different

operating systems with respect to time. Our scheme works

online by clustering timestamps of received packets into

lines using least-squares line fit. It maintains convex hull

of timestamp points to determine the quality of the clusters

with minimal amount of timestamp points. Therefore, af-

ter clustering process each cluster looks like a straight line

and corresponds to a computer. We implemented our NAT

detector and tested against a synthetic workload. In order

to create a synthetic workload, we implemented a packet

sending tool which is able to generate outbound network

traffic of hundreds of machines by sending crafted packets.

In Figure 13, we plotted actual number of machines sending

packets (#Machine Sent), number of machines sending at

least threshold number of packets (#MachinesOverThresh-

old) and the number of machines detected by our NAT de-

tection scheme (#Machine Detected). In order for our de-

tection to work, machines should send at least threshold

number of packets, which is set to 5 for this experiment.

As shown in the Figure 13, NAT device detection scheme

closely approximates the number of machines using their

TCP timestamp information.

6.1.2 Streaming Proxy Detection
Recently, proxy detection become a critical component for

online fraud detection. Several tools [5, 7] have been de-

veloped to detect a proxy. Given the IP address, a proxy

detector can understand whether the IP address belongs to

a proxy or not. Proxy detectors employ several methods;

one commonly used method involves looking for HTTP

message-header fields that are only used by proxies. For

instance, one of these additional header fields is stored in-

side the HTTP X FORWARD element and is used by vari-
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Figure 13. NAT Device Detection Experiment

ous proxies to submit the IP of the client using it. However,

in some cases proxy might not use these fields to improve

their stealth property. In that case, proxy detection tools

can examine the ports that packets are coming from. Some

common proxy ports are 8080, 80, 6588, 8000, 3128, 553,

554. Streaming proxy listens for RTSP connections at port

number 554 just like the streaming server. Moreover, some

proxies add proxy identification information to the RTSP

header of the packet such as HSP. In our case, we needed to

detect streaming proxies in order to allocate resources ac-

cordingly. Thus, we used RTSP header and port number to

detect streaming proxies.

Although we need to set higher connection limit for

proxies, not all the proxies require the same number of con-

nections as a limit. Employing a reputation system allows

us to determine these connection limits dynamically. Us-

ing a specific reputation algorithm to dynamically compute

the reputation scores, system can decide if a proxy is legit-

imate or not. The reputation scores can be determined by

observing the number of connections opened by the proxy

for each time interval T. Proxies passing the given limit un-

expectedly for consecutive intervals receive a bad score by

the reputation system.

6.2 Bloom Filter and Delta Queue
We used a Bloom Filter based counting scheme to main-

tain the number of connections opened by each IP address.

A Bloom Filter (BF) [4] computes k distinct independent

uniform hash functions. Each hash function returns an m-

bit result and this result is used as an index into a 2m sized

bit array. The array is initially set to zeros and bits are set as

data items are inserted. In Counting Bloom Filters (CBF)

there is a counter instead of bits and insertion increments

the counters corresponding to k hashed values.
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Figure 14. Delta Queue

In order to prevent malicious users maintaining the al-

located resources of the streaming server as in Section 5,

we used a Detla Queue structure. Delta queue is a type of
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a deadline queue, where each node is basically sorted by

their deadlines (expiration time of a connection). In Fig-

ure 14, there is a sample deadline queue, in which the first

node, Conn. 2, has 20 seconds to expire, and the second

node Conn. 8 has 20 + 30 = 50 seconds to expire etc.

6.3 Proposed Framework

Our proposed framework is given in Figure 15. Each

network packet coming to the streaming server is checked

whether it is a TCP ACK packet(3rd stage of TCP three-way

handshaking) or RTSP PLAY request packet. If the packet

is an RTSP PLAY request, then the Delta Queue structure

is updated accordingly. For each connection, Delta Queue

keeps the time that connection should be alive, timeAlive

value. timeAlive is calculated by multiplying the duration

of the media requested, mediaDuration, and the server

load value M such that timeAlive = mediaDuration ×
M . M is a variable starting from c1 when the server is

busiest and increases until c2 as the total number of con-

nections for the server decreases. It is reasonable to set c1
greater than 1 since each connection should be alive until

the media requested is played at least once. When a con-

nection is expired in Delta Queue, then the streaming server

behaves as if a TEARDOWN request is received from the

client and finalizes the session. By this way, we can prevent

the malicious users who are trying to hold server’s resources

by keeping their connections alive as it is explained in sec-

tion 5. For each session, only the first RTSP PLAY request

updates the Delta Queue since a malicious user may try to

send fake RTSP PLAY requests to update the Delta Queue

and hold the resources of the server. If the packet is TCP

ACK, then the Counting Bloom Filter(CBF) is updated ac-

cordingly. CBF maintains counters for a period of time T

keeping the information of how many RTSP connection is

established from each IP address. The goal in having sep-

arate counters is to have higher limits for NAT devices and

streaming proxies. NAT devices are allowed A number of

RTSP connections in period T , and a single user is allowed

B number of RTSP connections in periodT . Since we know

the approximate number of devices behind a certain NAT

device, n, the number A changes depending on n for each

IP address such that A = n ∗ B. Proxies are allowed C

number of connections. When period T expires, counters

are reset to 0 and a new interval starts. The idea is to have

some type of decaying counters and have a dynamic system

that enforces restrictions temporarily. Our goal is to have

minimal administrator intervention. The values of M , c1,

c2, T , B and C are environment dependent and can be dy-

namically configured depending on the load on the system

and number of connections. T also depends on the behav-

ior of streaming server. Most commercial streaming servers

have a duration limit such that a movie cannot be longer

than their pre-set value, which limits the users’ streaming

duration for a single connection. It is better to configure T

by using this pre-set duration limit since incorrect configu-

ration may weaken the detection scheme. Use of CBF and

Delta Queue creates a lightweight and space efficient data

structure.

6.4 Evaluation

We implemented the proposed detection framework and

tested it to see the ability of the framework to control the

server’s resources. The experiment is performed for a single

client suddenly requesting multiple RTSP connections us-

ing trace4 from DSS. The detection software implemented

in Java stays in the server side and controls the number of

connections opened from a single client by checking each

TCP packet coming to the server. The experiment is con-

ducted for one time interval T and different values of B.

Memory and CPU use of the streaming server is given in

Figure 16(a) and Figure 16(b) respectively for B equals to

5, 10, 20 and 40. As it is clear from the figure, controlling

the number of connections from a single client limits the

resource use of the server. Higher thresholds let more con-

nections go through and lead to more resource usage. The

detection scheme performs similar for HSS; however, the

results were omitted due to space restrictions.

The overhead imposed by our detection scheme arises

from the three parts of the detection; counting bloom filter,

delta queue and NAT detection. Regardless of the size of
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the elements, bloom filter only uses a constant number of

bits, c, for each element. Therefore, the memory used by

the bloom filter is constant not depending on the number of

connections in the system. Running times of the insert and

look up operations of bloom filters also require O(c) oper-

ations without depending on the number of connections in

the system. For the delta queue, we need 6 bytes for each

connection; 1 byte to keep the expiration time of the con-

nection, 1 byte for the connection ID and 4 bytes for the

pointer. For n number of connections, we need 6n bytes

space. Insertion operation of delta queue costs O(n) time

and deletion costs O(1) time. NAT detection needs to al-

locate 1 KByte of memory space for buffer and additional

200 Bytes for each detected machine’s convex hull. In case

there are a thousand machines in an exemplary setup, total

memory usage would be only 210 KBytes, which is reason-

able. CPU usage is significant only at the time of clustering

when the buffer gets full, which requires O(n) time opera-

tion for n machines. Readers are directed to [14] for more

information on the NAT detection scheme and its overhead.

7 Conclusion

We show that it is possible to open a large number of

RTSP connections from a single client to Darwin and He-

lix streaming servers. Large amount of resources can be

blocked at the streaming servers with these connections.

Using a testbed we analyzed how memory and CPU re-

sources of the streaming servers and proxies are affected

by the large number of RTSP connections. We propose a

dynamic and lightweight detection framework using bloom

filters. Proposed framework allows temporary restrictions

to clients and special handling for NAT devices and prox-

ies. Future work includes integration of proposed detection

framework into Darwin proxy and server and Helix proxy

and server.
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