
Integrated Maximum Flow Algorithm for
Optimal Response Time Retrieval of Replicated Data

Nihat Altiparmak and Ali Şaman Tosun
Department of Computer Science

University of Texas at San Antonio
San Antonio, TX 78249

{naltipar,tosun}@cs.utsa.edu

Abstract—Efficient retrieval of replicated data from multiple disks
is a challenging problem. Traditional retrieval techniques assume that
replication is done at a single site using homogeneous disk arrays
having no initial load or network delay. Recently, generalized retrieval
algorithms are proposed to cover heterogeneous disk arrays, initial
loads, and network delays. Generalized retrieval algorithms achieve the
optimal response time retrieval schedule by performing multiple runs of
a maximum flow algorithm. Since the maximum flow algorithm is used
as a black box technique, flow values of the previous runs cannot be
conserved to speed up the process. In this paper, we propose integrated
maximum flow algorithms for the generalized optimal response time
retrieval problem. Our first algorithm uses Ford-Fulkerson method and
the second algorithm uses Push-relabel algorithm. Besides the sequential
implementations, a multi-threaded version of the push-relabel algorithm
is also implemented. Proposed algorithms are investigated using various
replication schemes, query types, query loads, disk specifications, and
system delays. Experimental results show that the sequential integrated
push-relabel algorithm runs up to 2.5X faster than the black box
version. Furthermore, parallel integrated push-relabel implementation
achieves up to 1.7X speed up (∼1.2X on average) over the sequential
algorithm using two threads, which makes the integrated algorithm up
to 4.25X (∼3X on average) faster than its black box counterpart.

Keywords-declustering, replication, storage arrays, generalized re-
trieval, maximum flow, push-relabel

I. INTRODUCTION

Spatial databases, visualization, and GIS are some of the
applications that manage hundreds of terabytes. Many storage
products on the market have capacity to store hundreds of
terabytes; however, efficient retrieval is still a challenging
problem. Traditional retrieval methods based on index struc-
tures developed for single disk and single processor envi-
ronments [28], [30], [37] are ineffective for the storage and
retrieval in multiple processor and multiple disk environments.
Since the amount of data is large, it is very natural to use
parallel disk architectures. Besides scalability with respect to
storage, parallel disk architectures offer the opportunity to
exploit I/O parallelism during retrieval. The most crucial part
of exploiting I/O parallelism is to develop storage techniques
that access the data in parallel. Declustering is the most
common approach for efficient parallel I/O. The data space
is partitioned into disjoint regions, and data is allocated to
multiple disks. When users issue a query, data falling into
disjoint partitions is retrieved in parallel from multiple disks.

Many declustering schemes were proposed assuming a
single copy of the data [15], [17], [36], [40], [42], [44].
Recently, replication strategies for spatial range queries [16],
[23], [26], [27] and arbitrary queries [35], [39], [41] were
proposed. Replication improves the worst-case additive error
for declustering using multiple copies of the data. In addition

to offering lower worst-case additive error, replication has
many other advantages including better fault-tolerance and
support for queries of arbitrary shape. Readers are directed
to [43] for an in-depth comparison and analysis of replicated
declustering schemes.

Optimal response time retrieval problem of replicated data
is first formulated in [18] along with a Ford-Fulkerson based
maximum flow solution for homogeneous disk arrays located
on a single site. [45] extended the problem by locating the
homogeneous disk arrays on two different sites and proposed a
black box maximum flow algorithm for this extended problem.
Generalized optimal response time retrieval problem handling
the heterogeneous disk arrays, initial loads of the disks, and
more than two number of sites is formulated in [12]. Gen-
eralized problem is solved by performing multiple runs of a
black box maximum flow algorithm [12]. Although the number
of maximum flow calls are optimized using binary capacity
scaling technique in [12], black box usage of maximum flow
did not allow the conservation of previously calculated flows
eliminating possible performance improvements.

Deciding the retrieval schedule of a query is a time critical
issue since the decision time is directly added to the response
time of the query. In this paper, we propose two sequential, and
one parallel integrated maximum flow algorithms to reduce
this decision time for the generalized retrieval problem. We
found out that integrated push-relabel based algorithms are
superior to the integrated Ford-Fulkerson based algorithms for
optimal response time retrieval problems. Our sequential inte-
grated push-relabel algorithm runs up to 2.5X faster than the
black box version proposed in [12], and the parallel integrated
push-relabel implementation achieves up to 4.25X (∼3X on
average) speed-up using two threads compared to the black
box algorithm.

The rest of the paper is organized as follows. In Section II,
we present related background information and motivation be-
hind this work. Section III describes the Ford-Fulkerson based
integrated solution. Sequential push-relabel based integrated
algorithm is provided in Section IV, and parallel integrated
push-relabel implementation is explained in Section V. We
evaluate the performance of the proposed algorithms in Sec-
tion VI and conclude with Section VII.

II. MOTIVATION AND BACKGROUND

In this section, we present the motivation behind this work
together with necessary background information.

2012 41st International Conference on Parallel Processing

0190-3918 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICPP.2012.34

11

A. Application Model

Many applications have data generated at multiple sites and
queried by users from multiple sites. Storing all the data at
a central site is impractical. Replication of data on multiple
storage arrays with distant locations is necessary since multi-
server retrieval can be used and the load can be distributed
among the servers. An example model is provided in Figure 1,
where geographically distant storage arrays are connected over
a dedicated network.

Storage Array
Storage Array

Network
Dedicated

HDD
SSD

Hybrid
Storage Array

Fig. 1. Storage arrays connected with a dedicated network

Although traditional HDD (Hard Disk Drive) based storage
arrays still dominate the market share, SSD (Solid-state Drive)
based storage arrays [4], [6], [7], [9] and hybrid storage
arrays [3], [5], [8], [10] composed of SSDs and HDDs gain a
lot of attention recently. Our model supports the heterogeneity
of the storage arrays such that they can be HDD based,
SSD based or hybrid. In addition to the heterogeneity of the
storage arrays, we also consider the network delay to the
storage arrays and the initial load of the disks caused by the
previous queries. Many Internet service providers now offer
dedicated Internet access with bandwidth, latency, packet loss,
and availability guarantees. For example, XO communications’
dedicated Internet access [1] guarantees round-trip latency of
65 milliseconds edge-to-edge within the XO network, round-
trip packet loss of at most 1%, and availability of 100%. Using
the guarantees given by a dedicated network, an estimate
network delay to a storage array can be determined. Besides
the network delay, initial loads of the disks from the previous
queries can also be calculated easily since it is based on how
the previous queries are scheduled.

Potential applications of the model are as follows:

• Dataset for an application is stored on a storage array.
A new high-end storage array is purchased. Instead of
moving all the data to the new storage array, a system
spanning the two storage arrays can be used. Storage
arrays are costly and making the most out of them is
crucial.

• A large dataset is split and stored at storage arrays
at multiple sites. We want to run an application that
potentially processes parts of the whole dataset. The
model above allows us to do this efficiently.

• High-end computer centers with storage arrays can be
combined to create storage systems with much larger
capacity in an affordable way.

• An SSD based or hybrid storage array is added to a

storage system. Since SSDs have write limitations, it is
necessary to use them together with other storage arrays
and the model above can be used for this purpose.

B. Maximum Flow Problem

Maximum flow is a general technique used in optimal
response time retrieval problems [12], [18], [45]. In the
maximum flow problem, the goal is to send as much flow
as possible between two vertices, subject to edge capacity
limits. An instance of the maximum flow problem is a network
G = (V,E, s, t, u), where s ∈ V is a distinguished vertex
called the source, t ∈ V is a distinguished vertex called the
sink, and u is a capacity function. A flow is a pseudoflow that
satisfies the flow conservation constraints:

∀v ∈ V − {s, t} :
∑

w∈V :(v,w)∈E

f(v, w) = 0 (1)

Equation 1 states that for all vertices except the source and
sink, the net flow leaving that vertex is zero. The value of a
flow f is the net flow into the sink as in Equation 2.

|f | =
∑

v∈V :(v,t)∈E

f(v, t) (2)

The maximum flow problem has been studied for over
fifty years. It has a wide range of applications including
the transshipment and assignment problems. Known solu-
tions to this problem include Ford-Fulkerson augmenting
path method [24], [25], the closely related blocking flow
method [22], [33], network simplex method [21], [32], and
push-relabel method of Goldberg and Tarjan [29].
1) Ford-Fulkerson Method: The motivation behind the

Ford-Fulkerson augmenting path method is as follows:
An augmenting path is a residual s-t path. If there exists an

augmenting path in Gf , then we can improve f by sending
flow along this path. Ford and Fulkerson [24] showed that the
converse is also true.
Theorem 1: A flow f is a maximum flow if and only if Gf

has no augmenting paths.
This theorem motivates the augmenting path algorithm of

Ford and Fulkerson’s [24], which repeatedly sends flow along
augmenting paths, until no such paths remain.
2) Push-relabel Method: Push-relabel methods send flow

along individual edges instead of entire augmenting paths. This
leads to better performance both in theory and practice [29].
The push-relabel algorithm works with preflows, which is a
flow that satisfies capacity constraints except additional flows
into a vertex is allowed called excess. A vertex with positive
excess is said to be active. Each vertex is assigned a height,
where initially all the heights are zero except height[s] = |V |.
An iteration of the algorithm consists of selecting an active
vertex, and attempting to push its excess to its neighbors with
lower heights. If no such edge exists, the vertex’s height is
increased by 1. The algorithm terminates when there are no
more active vertices with label less than |V |.

C. Replicated Declustering and Retrieval

A replicated declustering of 7 × 7 grid using 7 disks is
given in Figure 2. The grid on the left represents the first
copy and the grid on the right represents the second copy.

12

Each square denotes a bucket and the number on the square
denotes the disk that the bucket is stored at. An i × j range
query has i rows and j columns. For retrieval of an i × j

range query from homogeneous disks, the best we can expect
is � i∗j

7 � disk accesses and this happens if the buckets of the
query are spread to the disks in a balanced way. In most cases,
this is not possible without replication.

0

3

6

2

5

1

4

1

4

0

3

6

2

5

2

5

1

4

0

3

6

3

6

2

5

1

4

0

4

0

3

6

2

5

1

5

1

4

0

3

6

2

6

2

5

1

4

0

3

0 1 2 3 4 5 6

2 3 4

4

5

5

6

6

6

0

0

0

1

1

1

1

2

2

2

3

3

3

3

4

4

4

5

5

5

6

6

6

0

0

0

1

1

2

2 3 4

5

q1q1

Fig. 2. Orthogonal Allocation

The notation used in this paper along with their meanings
is given in Table I.

TABLE I
NOTATION

Notation Meaning

N Total number of disks in the system
|Q| Total number of buckets to be retrieved; query size
c Number of copies for each bucket
Cj Average retrieval cost of a single bucket from disk j
Dj Network delay to the server where disk j is located
Xj Time it takes for disk j to be idle if busy, 0 otherwise

D. Basic Retrieval Problem

In optimal response time retrieval problem, we have N disks
and |Q| buckets. Each bucket can be replicated among multiple
disks. The aim is to find a way of retrieving the requested
buckets of a query from the disks so that the overall response
time of the query is minimized. The basic problem assumes
that the disks are homogeneous without having any initial load
or network delay and they are all located on a single site. In
this case, the overall response time of the query is determined
by the disk that is used to retrieve the maximum amount of
buckets. In other words, we need to retrieve as few buckets as
possible from the disk that is used to retrieve the maximum
amount of buckets.

Basic problem is solved as a max-flow problem using graph
theory. When replication is used, each bucket is stored on
multiple disks and we have to choose one of the disks for
retrieval of the bucket. Consider the query q1 given in Figure 2.
Query q1 is a 3 × 2 query with optimal retrieval cost of
� 3×2

7 � = 1. However, since in the first copy the buckets [0, 0]
and [2, 1] are both stored on disk 0, retrieval using the first
copy requires 2 disk accesses. When we consider both copies,
we can represent the problem as a maximum flow problem [18]
as in Figure 3.

For each bucket and for each disk we create a vertex. In
addition, two more vertices called source and sink are created.
Source vertex s is connected to all the vertices denoting the
buckets and all the vertices denoting the disks are connected
to the sink vertex t. An edge is created between vertex vi
denoting bucket i and vertex vj denoting disk j if bucket i

is stored on disk j. Next step is to set the capacities of the
edges. All the edges except the ones between the disks and

the sink have capacity 1. The capacity of the edges between
the disks and the sink are set to � |Q|

N
�.

[0,0]

[0,1]

BUCKETS DISKS

[1,0]

[1,1]

[2,1]

[2,0]

s t3

2

1

0

4

5

6

Fig. 3. Max-flow representation of query q1 for single site

Maximum flow representation of query q1 for single site is
given in Figure 3. Maximum flow is shown using thick lines in
the figure. Since query q1 has only 6 buckets and � 67� = 1, all
the edges have capacity 1 in this case. When using maximum
flow representation, if the maximum flow between the source
and the sink is |Q|, then the query can be retrieved using � |Q|

N
�

disk accesses. Otherwise, we need to increment the capacities
of all the edges going to the sink by one and re-run the max-
flow algorithm. We repeat this incrementation process until the
flow of |Q| is reached. Max-flow algorithm is called O(|Q|)
time in the worst case where all the buckets are stored at a
single disk.

E. Generalized Retrieval Problem

Besides covering the properties of the basic problem, gen-
eralized retrieval problem also handles the heterogeneity of
the disks, initial loads, multi-site retrieval, and network delay.
Consider the query q1 given in Figure 2 again but this time
assume that the grid on the left represents the allocation at site
1 and the grid on the right represents the allocation at site 2.
There are 14 disks in the system, disks 0-6 are located at site
1 and the disks 7-13 are located at site 2. Generalized retrieval
problem can be formulated as a maximum flow problem [12].
For the set of parameters summarized in Table II, optimal
response time retrieval of the query q1 is shown in Figure 4
using the thick lines.

Let E be the edge set holding every edge ej between the
disk vertex j and the sink. As in the basic problem, all the
edges except the ones in E have capacity 1. In the basic
problem, since all the disks are homogeneous without having
any network delay or initial load, it is possible to initially set
the capacities of all the edges in E to the theoretical lower
bound � |Q|

N
�. If the flow of |Q| cannot be reached, capacities of

the edges is E are incremented all at the same time. However,
this is not possible for the generalized retrieval problem since
different disks might have different retrieval costs depending
on their speed, initial load, and network delay. Figure 4 shows
the proper values of the capacities for the parameters defined
in in Table II.

In order to set the capacities of the edges in E properly, [12]
proposes a binary capacity scaling algorithm. The algorithm
defines a range where the optimal response time is known to

13

TABLE II
SYSTEM PARAMETERS

Disk j Cj (ms) Dj (ms) Xj (ms)

0-6 8.3 2 1
7,8,10,13 6.1 1 0
9,11,12 13.2 1 0

BUCKETS

11

13

12

10

7

9

8

6

5

ts

[2,0]

[2,1]

[1,1]

[1,0]

[0,1]

[0,0]

3

2

1

0

4

0

1

1

1
1
0
1
0
0
0

DISKS

1

1

0

1

Fig. 4. Max-flow representation of query q1 for 2 sites

be within this range. In each iteration, the algorithm picks
the middle value of this range, calculates the capacities for
this middle value and runs the maximum flow algorithm.
Depending on the flow value, the algorithm decreases the
range by half either eliminating the top range or the bottom
range. After the range is small enough, the algorithm reaches
to the optimal response time retrieval by incrementing the
capacity of the edge yielding the minimum cost and running
the max-flow in each iteration. The algorithm terminates when
the maximum flow of |Q| is reached. Readers are directed
to [12] for more details.

The problem with the solution proposed in [12] is that it
uses maximum flow as a black box technique. Therefore, in
each run of the maximum flow with different capacities, flow
values are calculated starting from zero all over again. Since
the algorithm increments the capacities used in one previous
run for each step, current run of maximum flow can start from
the flow values calculated in the previous run. This approach
will obviously save considerable amount of maximum flow
calculations; however, it requires an integrated maximum flow
solution for the generalized retrieval problem.

III. FORD-FULKERSON BASED SOLUTION

The first integrated algorithm we propose for the general-
ized retrieval problem uses the Ford-Fulkerson method. Al-
gorithm 1 shows a Ford-Fulkerson based integrated algorithm
proposed in [18] for the basic retrieval problem.

Algorithm 1 assumes that flow values of the edges going
out of the source vertex are all initialized to 1 at the beginning.
Lines 1-2 sets the capacities of the edges in E to the theoretical
lower bound � |Q|

N
�, where E holds all the edges between the

disk vertices and the sink. Then, for each bucket i in the query,
the algorithm searches for an augmenting path from the vertex
representing the bucket i to the sink vertex in lines 3-4. If

Algorithm 1 FordFulkersonBasic()
1: for all e ∈ E do
2: caps[e]← �

|Q|
N
�

3: for i← 1 to |Q| do
4: dfs success = DFS(G, v[i], t, caps, flow, path)
5: while (!dfs success) do
6: for all e ∈ E do
7: caps[e]++
8: dfs success = DFS(G, v[i], t, caps, flow, path)
9: for all e ∈ path do

10: if target(e) �= t then
11: G.reverse edge(e)
12: if isDirectionReverse(e) then
13: flow[e]- -
14: else
15: flow[e]++
16: fixReversedEdges()

Algorithm 2 FordFulkersonIncremental()

1: for all e ∈ E do
2: caps[e]← 0
3: for i← 1 to |Q| do
4: dfs success = DFS(G, v[i], t, caps, flow, path)
5: while (!dfs success) do
6: IncrementMinCost()
7: dfs success = DFS(G, v[i], t, caps, flow, path)
8: for all e ∈ path do
9: if target(e) �= t then

10: G.reverse edge(e)
11: if isReverse(e) then
12: flow[e]- -
13: else
14: flow[e]++
15: fixReversedEdges()

Algorithm 3 IncrementMinCost()
1: min cost←MAXDOUBLE
2: for all e ∈ E do
3: v ← G.source(e)
4: if G.in degree(v) ≤ caps[e] then
5: E.delete(e)
6: else
7: cost[e]← D[e] +X[e] + (caps[e] + 1) ∗ C[e]
8: if costs[e] < min cost then
9: min cost← costs[e]

10: for all e ∈ E do
11: if costs[e] == min cost then
12: caps[e]++

no augmenting path exists, capacities of the edges in E are
incremented by one until a path is found through the lines 5-8.
For each edge in the path, line 11 reverses its direction if the
edge is between a bucket vertex and a disk vertex. This reversal
is necessary to be able to change the retrieval decision of a
previously assigned bucket. Finally, lines 12-15 increments or
decrements the flow of each edge in the path depending on its
direction. If the edge direction is not its original direction, then
the flow is decremented meaning that the retrieval choice is
changed, otherwise the flow is incremented. At the end of the
algorithm, we have to fix the directions of the edges since some
of them might have a reverse direction. It is proven in [18]
that Algorithm 1 has the worst case complexity of O(c∗ |Q|2)
since the DFS might try c ∗ |Q| edges in the worst case. Note
that the capacity incrementation in lines 6-7 is performed at

14

most O(|Q|) time during the entire execution of the algorithm.
Algorithm 1 works for the basic retrieval problem only.

In order to extend this algorithm to the generalized retrieval
problem, we propose Algorithm 2. Algorithm 2 starts to the
capacity incrementation from 0 (lines 1-2) since is not possible
to use a simple formula like � |Q|

N
� as a lower bound in the

generalized case. Secondly, since each disk might have a
different retrieval cost, capacities of the edges in E cannot be
incremented at the same time. Only the capacity of the edge
yielding the minimum retrieval cost should be incremented in
each incrementation step. Algorithm 2 calls Algorithm 3 for
this purpose in line 6, which is the main difference between
Algorithm 2 and Algorithm 1. Algorithm 3 determines the
edges in E yielding the minimum retrieval cost in lines 7-9
and increments the capacities of the edges with this minimum
cost in lines 11-12. Note that, if there are more than one
edges yielding the same retrieval cost, their capacities are
incremented at the same time as in the basic problem. Lines
3-5 remove the edge from the edge set E if the disk associated
with that edge cannot be used to retrieve any more buckets.
This removal ensures that the number of incrementation steps
are bounded by O(c∗ |Q|) in the worst case. Therefore, worst
case complexity of the Algorithm 2 is O(c2 ∗ |Q|2).

IV. PUSH-RELABEL BASED SOLUTION

Although Ford-Fulkerson based algorithms are simple and
easy to implement, most of the practical maximum flow
implementations are based on push-relabel based algorithms.
Therefore, we also propose a push-relabel based integrated
maximum flow algorithm for the generalized optimal response
time retrieval problem. Algorithm 4 presents a basic push-
relabel based maximum flow algorithm. Lines 1-8 show the
initialization step. Push/relabel operations of the algorithm
are performed in lines 9-10, which we skip for the sake of
simplicity; however, readers are directed to [29] for more
details. When the algorithm terminates, excess value of the
sink holds the maximum flow amount that can be pushed from
the source s to the sink t. Our implementation of Algorithm 4
has the complexity of O(|V 3|), where |V | is the number of
vertices in G. This is possible since we use the FIFO ordering
for selecting vertices and exact height calculation heuristics
suggested by [19].

Algorithm 4 PushRelabelBasic()
1: for all out edges(e,s) do
2: v ← target(e)
3: QUEUE.append(v)
4: flow[e]← cap[e]
5: excess[v] += cap[e]
6: for all nodes(v,G) do
7: height[v]← 0
8: height[s]← G.number of nodes()
9: while QUEUE �= ∅ do

10: apply push/relabel operations by updating the QUEUE
11: return excess[t]

Algorithm 5 presents a push-relabel based integrated maxi-
mum flow algorithm for the generalized response time retrieval

problem. Similar to Algorithm 2, Algorithm 5 increments the
capacity of the edge yielding the minimum retrieval cost in
each incrementation step as in line 2 and runs until the excess
value of the sink reaches to |Q|. For every iteration, we clear
the queue as in line 3 and initialize the height values as in line
11-13. Push-relabel operations ensure that excess values of the
vertices except the source and the sink vertex are all 0 when
the algorithm terminates. Therefore, we only set the excess
value of source to 0 in every iteration as in line 14. Note that
our aim is conserving the flows found in the previous runs,
therefore flow values are not initialized back to 0. In addition
to this, the algorithm should add vertices to the queue only if
they can pass more flow in the next push/relabel operations.
We check this by using the δ value calculated in line 6 and
initialize these vertices only in lines 7-10.

Algorithm 5 PushRelabelIncremental()

1: while excess[t] �= |Q| do
2: IncrementMinCost()
3: QUEUE.clear()
4: for all out edges(e,s) do
5: v ← target(e)
6: δ ← cap[e]− flow[e]
7: if d > 0 then
8: QUEUE.append(v)
9: flow[e]← cap[e]

10: excess[v] += cap[e]
11: for all nodes(v,G) do
12: height[v]← 0
13: height[s]← G.number of nodes()
14: excess[s]← 0
15: while QUEUE �= ∅ do
16: apply push/relabel operations by updating the QUEUE
17: return excess[t]

Algorithm 5 solves the generalized optimal response time
retrieval problem using an integrated push-relabel based max-
imum flow algorithm. Although we can conserve the flows
calculated for the previous capacities in the current run, the
algorithm still considers all possible retrieval times starting
from the minimum in an exhaustive search manner. Since
the graph has |V | = |Q| + N + 2 vertices, Algorithm 5
has the worst case complexity of O(c ∗ |Q|4) where O(|Q|3)
comes from the push/relabel operations (assuming |Q| > N)
and O(c ∗ |Q|) comes from IncrementMinCost(). Since
we are conserving the flows, the algorithm is expected to
run faster in practice; however, we can still improve the
worst case complexity further by using the binary capacity
scaling technique presented in [12]. Binary capacity scaling
technique will bring the capacity values up to an initial value
in O(log(|Q|)) operations before the incrementation step is
started by Algorithm 5. By this way, number of incrementation
steps will be bounded by N , the number of disks in the system.

Algorithm 6 presents our final push-relabel based integrated
maximum flow algorithm that uses the binary capacity scaling
technique. First, we define a range [tmax, tmin) in lines 1-
11 where we know the optimal response time retrieval lies
within. In order to ensure this, we calculate tmax assuming
that all the query buckets are retrieved from the disk with the
largest retrieval cost, and tmin assuming that all the query

15

buckets are retrieved from the disk with the smallest retrieval
cost. Since we want to ensure that there is no solution for
tmin, we subtract the min speed value from tmin in line 11.
min speed is the average retrieval time of a single block from
the fastest disk in the system calculated in lines 9-10.

Algorithm 6 PushRelabelBinary()
1: min speed←MAXDOUBLE
2: tmin ←MAXDOUBLE
3: tmax ← 0
4: for all e ∈ E do
5: if D[e] +X[e] + |Q| ∗ C[e] > tmax then
6: tmax ← D[e] +X[e] + |Q| ∗ C[e]

7: if D[e] +X[e] + � |Q|
N
� ∗C[e] < tmin then

8: tmin ← D[e] +X[e] + � |Q|
N
� ∗ C[e]

9: if C[e] < min speed then
10: min speed← C[e]
11: tmin -= min speed
12: while (tmax − tmin) ≥ min speed do
13: tmid ← tmin + (tmax − tmin) ∗ 0.5
14: for all e ∈ E do
15: caps[e]← �(tmid −D[e]−X[e])/C[e]�
16: QUEUE.clear()
17: for all out edges(e,s) do
18: v ← target(e)
19: δ ← cap[e]− flow[e]
20: if d > 0 then
21: QUEUE.append(v)
22: flow[e]← cap[e]
23: excess[v] += cap[e]
24: for all nodes(v,G) do
25: height[v]← 0
26: height[s]← G.number of nodes()
27: excess[s]← 0
28: while QUEUE �= ∅ do
29: apply push/relabel operations by updating the QUEUE
30: if excess[t] �= |Q then
31: StoreF lows()
32: tmp excess t← excess[t]
33: tmin ← tmid

34: else
35: RestoreF lows()
36: excess[t]← tmp excess t
37: tmax ← tmid

38: RestoreF lows()
39: excess[t]← tmp excess t
40: for all e ∈ E do
41: caps[e]← �(tmin −D[e]−X[e])/C[e]�
42: PushRelabelIncremental()

Algorithm 6 finds the capacities of the flow graph for tmid

in line 15, performs initialization of the push/relabel operations
through the lines 16-27, and applies push/relabel operations in
lines 28-29. If there is no solution such that excess[t] �= |Q|,
we store the current flow state of the graph as in lines 31-32 to
be used later to eliminate unnecessary flow calculations. Also,
we increase tmin to tmid as in line 33 to reduce the range. If
there is a solution such that excess[t] = |Q|, since we cannot
be sure of the optimality of the solution, we restore the saved
flow values and decrease tmax to tmid as in lines 35-37. The
algorithm stops when the range is smaller than min speed,
restores the saved flows, calculates the final capacities us-
ing tmin, and calls PushRelabelIncremental() through the
lines 38-42. Worst case complexity of the Algorithm 6 is
O(log(|Q|) ∗ |Q|3); however, it is expected to perform better
in practice thanks to the flow conservation property.

V. PARALLEL PUSH-RELABEL IMPLEMENTATION

Most new generation storage arrays are powered with multi-
core processors. Since retrieval decision is a time critical issue,
it is reasonable to use multi-threaded implementations in order
to reduce the execution time of retrieval algorithms further.
Many push-relabel based parallel maximum flow algorithms
are proposed in the literature such as [13] and [14]. How-
ever, both of these implementations require locks to perform
push/relabel operations. Since locks are known to have ex-
pensive overheads [20], we decided to use the asynchronous
parallelization method presented in [31]. The algorithm pre-
sented in [31] uses the same push/relabel techniques proposed
in [29]; however, it does not require any locks or barriers to
protect the push/relabel operations. Instead, they use atomic
read-modify-write instructions. We implemented a parallel
version of our Algorithm 6 using pthreads and the techniques
described in [31]. Since the parallelization should take place
in the push/relabel operations, line 29 of the Algorithm 6 is
modified to support multi-threaded push/relabel operations as
it is described in [31].

VI. EXPERIMENTAL RESULTS

In this section, we provide experimental results using var-
ious sets of parameters. Our aim is comparing the execution
times (running time, runtime) of the proposed algorithms with
the existing ones. We investigate the impact of allocation
scheme, query type, query load, disk speed, network delay to
the site, and initial load of the disks on the execution times.
We implemented the experiments in C++ and compiled using
g++ version 4.4.3 optimization level 1 (-O1) using the graph
structure of LEDA [34] except the parallel implementation.
For the parallel generalized retrieval algorithm, we used C
and the pthread library in order to comply with the original
implementation presented in [31]. Parallel implementation is
compiled using gcc version 4.4.3 optimization level 3 (-O3)
as in [31]. The machine we used has dual Intel Xeon X5672
quad-core processors with total of 8 cores. Each core has 3.2
GHz of clock speed and the machine has 32GB of physical
memory running on an Ubuntu 10.04.03 LTS operating system.

A. Allocation Scheme

We have experimental results for three different allocation
schemes described below.

• Random Duplicate Allocation: Random Duplicate Allo-
cation (RDA) [38] stores a bucket on two disks chosen
randomly from the set of disks. Retrieval cost of random
allocation is at most 1 more than the optimal with high
probability for single site retrieval [38].

• Orthogonal Allocation: Orthogonal allocations [23], [39]
guarantee that when the disks that a bucket is stored at is
considered as a pair, each pair appears only once in the
disk allocation. In an N × N declustering system with
N disks, there are N2 buckets and N2 pairs. So, it is
possible to have each pair exactly once. For the first copy,
we used the threshold based declustering scheme [44].

16

• Dependent Periodic Allocation: A d-dimensional
disk allocation scheme f(i1, i2, . . . , id) is periodic if
f(i1, i2, . . . , id) = (a1∗i1+a2∗i2+. . .+ad∗id) mod N ,
where N is the number of disks and each ai i = 1 . . . d
satisfies gcd(ai, N) = 1 and ai �= 0 [11], [46]. For
the first copy, we use the allocation scheme yielding
the lowest additive error based on the results provided
in [11]. For the second copy, a shifted version of
the first copy is used. The two allocations are in
the form of f(i, j) = a1 ∗ i + a2 ∗ j mod N and
g(i, j) = f(i, j) +m mod N, 1 ≤ m ≤ N − 1.

B. Query Types

We have experimental results for two different types of
queries; range queries and arbitrary queries.

• Range Query: Range queries are rectangular in shape.
We assume a wraparound grid consistent with the choice
of disk allocations. A range query is identified with 4
parameters (i, j, r, c) 0 ≤ i, j ≤ N − 1, 1 ≤ r, c ≤ N .
i and j are indices of the top left corner of the query
and r, c denote the number of rows and columns in the
query. The number of distinct range queries on an N×N

grid is (N∗(N+1)
2)2, which can be found by counting the

number of ways to choose two points out of N + 1 row
and column points on the grid as follows:

(
N+1
2

)
∗
(
N+1
2

)
.

• Arbitrary Query: Arbitrary queries have no geometric
shape. Any subset of the set of buckets is an arbitrary
query. We can denote arbitrary queries as a set and the
number of arbitrary queries is

∑N2

i=1

(
N2

i

)
which is equal

to 2N
2

(number of subsets of a set with N2 elements).

C. Query Load

We use three different query loads.We use the notation pik
to denote the probability that a query in load i can be retrieved
in k disk accesses optimally. Once the optimal number of
disk accesses k is selected, the number of buckets is selected
uniformly from the range [(k − 1)N + 1, kN].

• Load 1: The distribution of queries is similar to the
distribution of queries for the particular query type. For
the distribution of range queries, smaller size queries
are more likely; for the distribution of arbitrary queries,
medium size queries are more likely. Expected bucket
size of load 1 queries is N2

4 + O(1
N
) for range queries

and N2

2 +O(1
N
) for arbitrary queries.

• Load 2: The distribution of queries is uniform. We
achieve this by setting p2k = 1

N
. Expected bucket size

of load 2 queries is N2

2 .
• Load 3: Much smaller queries than load 1 and load 2 are

more likely. We achieve this by setting p3k = 2N

(2N−1)∗2k .
In this case p3k = 1

2p
3
k−1, 2 ≤ k ≤ N . Expected bucket

size of load 3 queries is 3N
2 .

D. Disks

We have experimental results on five different disks. Spec-
ifications of the disks are given in Table III. The time value

provided in the table is the average access time to read a block
in our system, which is calculated using the Ubuntu disk utility
benchmark. Average access time of a block is defined as the
summation of spin-up time, seek time, rotational latency and
transfer time for HDDs; just transfer time for SSDs.

TABLE III
DISK SPECIFICATIONS

Producer Model Type RPM Time (ms)

Seagate Barracuda HDD 7.2K 13.2
WD Raptor HDD 10K 8.3

Seagate Cheetah HDD 15K 6.1
OCZ Vertex SSD - 0.5
Intel X25-E SSD - 0.2

E. Experiment Parameters

All the experiments conducted are summarized in Table IV.
Delay and initial load values are given in milliseconds.
R(2,10,2) means that a number among the set 2, 4, 6, 8,
and 10 is chosen randomly. If the system is homogeneous,
the properties of the cheetah disk is used for all the disks in
the system. If the system is heterogeneous, then the disks are
chosen randomly among the disk group indicated in the table.
Disk groups can be HDDs, SSDs, or HDDs+SSDs.

TABLE IV
EXPERIMENTS

Exp. # of Disk Site 1 Site 2
Num. Sites Prop. Disks Delays Loads Disks Delays Loads

1 2 hom. cheetah 0 0 cheetah 0 0
2 2 het. ssd 0 0 hdd 0 0
3 2 het. hdd 0 0 ssd 0 0
4 2 het. ssd+hdd 0 0 ssd+hdd 0 0
5 2 het. ssd+hdd R(2,10,2) R(2,10,2) ssd+hdd R(2,10,2) R(2,10,2)

F. Results

In this section, we provide some of the experimental results
that are interesting for our purposes. All the results are
available on the project web page [2]. In all experiments, we
used an N×N grid for N disks and for each value of N , 1000
queries are performed. For every experiment we performed,
we compared the total optimal response time values of these
1000 queries for each algorithms we tested and found out that
the results are matching as expected. In this paper, we are
interested in the execution time comparison of the algorithms.
Therefore, we do not share the response time values of the
experiments. An in depth study for the effect of different
parameters on the response time of the queries can be found
in [12].
1) Ford-Fulkerson vs. Push-relabel: In this section, we

compare the execution times of the Ford-Fulkerson based
algorithms with the Push-relabel based algorithms. Since the
basic retrieval problem is a subset of the generalized retrieval
problem, algorithms proposed for the generalized retrieval
problem can also solve the basic retrieval problem. Experiment
1 is an example of a basic retrieval problem where the disks
are homogeneous and there is no initial load or network delay.
Figure 5 compares the Algorithm 1 with the Algorithm 6 using
the Experiment 1, where x-axis shows the number of disks and
y-axis shows execution times. Even though Ford-Fulkerson
based retrieval algorithms have better worst case complexity,

17

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
un

tim
e

P
er

 Q
ue

ry
 (

m
se

c)

N

LOAD 1 - RANGE - RDA

Ford-Fulkerson
Push-relabel

(a) Range, Load 1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
un

tim
e

P
er

 Q
ue

ry
 (

m
se

c)

N

LOAD 2 - ARBITRARY - RDA

Ford-Fulkerson
Push-relabel

(b) Arbitrary, Load 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
un

tim
e

P
er

 Q
ue

ry
 (

m
se

c)

N

LOAD 3 - RANGE - RDA

Ford-Fulkerson
Push-relabel

(c) Range, Load 3
Fig. 5. Experiment 1, RDA, Ford-Fulkerson - Push-relabel Execution Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
un

tim
e

P
er

 Q
ue

ry
 (

m
se

c)

N

LOAD 1 - ARBITRARY - Orthogonal

Ford-Fulkerson
Push-relabel

(a) Arbitrary, Load 1

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
un

tim
e

P
er

 Q
ue

ry
 (

m
se

c)

N

LOAD 2 - RANGE - Orthogonal

Ford-Fulkerson
Push-relabel

(b) Range, Load 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
un

tim
e

P
er

 Q
ue

ry
 (

m
se

c)

N

LOAD 3 - ARBITRARY - Orthogonal

Ford-Fulkerson
Push-relabel

(c) Arbitrary, Load 3
Fig. 6. Experiment 5, Orthogonal, Ford-Fulkerson - Push-relabel Execution Time

push-relabel based retrieval algorithms are better in practice.
Execution time of the push-relabel based Algorithm 6 is at
most 25 milliseconds for load 2 with N = 100 and |Q| =
5000; however, Ford-Fulkerson based Algorithm 1 requires
almost a second for same case. The results are similar for load
1. Since the query sizes are small for load 3, Algorithm 1 is
slightly better than Algorithm 6 for N < 60 (less than 0.1
milliseconds difference); however, Algorithm 1 does not scale
well when the number of disks and the query size increase.

Figure 6 compares the Ford-Fulkerson based Algorithm 2
with the Push-relabel based Algorithm 6 for the generalized
retrieval problem of Experiment 5. Performances are similar to
the basic retrieval case shown in Figure 5. For Experiment 5,
push-relabel based Algorithm 6 requires at most 30 ms when
N = 100 and |Q| = 5000. Figure 5 and Figure 6 clearly show
that push-relabel based retrieval algorithms are superior to the
Ford-Fulkerson based retrieval algorithms for both the basic
retrieval problem and the generalized retrieval problem.

2) Blackbox Push-relabel vs. Integrated Push-relabel: In
this section, we compare the execution time of the black box
push-relabel based binary retrieval algorithm proposed in [12]
with our integrated binary push-relabel algorithm presented
in Algorithm 6. Black box algorithm uses LEDA’s push-
relabel implementation and the integrated algorithm modifies
the same implementation for fair results. Figure 7 shows
this comparison for the basic retrieval case using Experiment
1, where x-axis shows the number of disks and the y-axis
shows the execution time ratios (black box/integrated). Since
capacities of the disks are incremented at the same time in
the basic retrieval case, less capacity incrementation steps are
performed. Therefore, flow conservation property of the inte-
grated algorithm could not be exploited. Nonetheless, if a cer-
tain allocation scheme requires more capacity incrementation,
then the integrated algorithm clearly outperforms the black box

algorithm. For example, Orthogonal allocation requires more
incrementation steps for the range queries and RDA requires
more incrementation steps for the arbitrary queries. In these
cases, integrated algorithm performs about 1.3X faster than the
black box algorithm. By this way, performance gap between
different allocation schemes are also decreased thanks to the
integrated algorithm. This can be observed more clearly in
Figure 8.

Figure 8 compares the black box and the integrated push-
relabel based retrieval algorithms using the Experiment 3.
Figure 8(a) shows the execution time of the black box al-
gorithm. Retrieval algorithm for dependent allocations have
lesser execution time since their retrieval choices are more
obvious than Orthogonal allocations and RDA. However, ex-
ecution times for Orthogonal and RDA are expected to be
similar. Figure 8(b) shows the execution time of the integrated
algorithm. As it is clear from the graph, execution time
for Orthogonal and RDA are similar and execution time for
dependent is slightly less than the others as expected. In other
words, integrated algorithm decreased the execution time gap
between different allocation schemes. Therefore, execution
time ratio of black box and integrated algorithm presented
in Figure 8(c) is higher for the Orthogonal allocation.

Figure 9 shows the execution time comparison of the
black box and the integrated algorithm for the Experiment
5, where we see the most dramatic performance improvement
of the integrated algorithm. Integrated algorithm is up to 2.5
times faster than the black box algorithm. As the number
disks and the query sizes increase, performance improvement
of the integrated algorithm also increases. The reason for
this performance improvement lies in the flow conservation
property of the integrated algorithm. Retrieval decision is
harder in Experiment 5 since all the parameters are random.
Therefore, Experiment 5 requires more incrementation steps

18

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

R
at

io
 (

bb
/in

t)

N

LOAD 1 - RANGE

RDA
Dependent
Orthogonal

(a) Range, Load 1

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

R
at

io
 (

bb
/in

t)

N

LOAD 2 - ARBITRARY

RDA
Dependent
Orthogonal

(b) Arbitrary, Load 2

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

R
at

io
 (

bb
/in

t)

N

LOAD 3 - RANGE

RDA
Dependent
Orthogonal

(c) Range, Load 3
Fig. 7. Experiment 1, Push-relabel, Black Box/Integrated Execution Time Ratio

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
un

tim
e

P
er

 Q
ue

ry
 (

m
se

c)

N

LOAD 1 - RANGE - BLACK BOX

RDA
Dependent
Orthogonal

(a) Black Box Execution Time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
un

tim
e

P
er

 Q
ue

ry
 (

m
se

c)

N

LOAD 1 - RANGE - INTEGRATED

RDA
Dependent
Orthogonal

(b) Integrated Execution Time

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

R
at

io
 (

bb
/in

t)

N

LOAD 1 - RANGE

RDA
Dependent
Orthogonal

(c) Execution Time Ratio
Fig. 8. Experiment 3, Arbitrary Load 1, Push-relabel Algorithms Comparison

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

R
at

io
 (

bb
/in

t)

N

LOAD 1 - ARBITRARY

RDA
Dependent
Orthogonal

(a) Load 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

R
at

io
 (

bb
/in

t)

N

LOAD 2 - ARBITRARY

RDA
Dependent
Orthogonal

(b) Load 2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0 10 20 30 40 50 60 70 80 90 100
R

un
tim

e
R

at
io

 (
bb

/in
t)

N

LOAD 3 - ARBITRARY

RDA
Dependent
Orthogonal

(c) Load 3
Fig. 9. Experiment 5, Push-relabel, Black Box/Integrated Execution Time Ratio

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 10 20 30 40 50 60 70 80 90 100

R
un

ni
ng

 T
im

e
R

at
io

 (
pa

ra
lle

l/s
in

gl
e)

Query

LOAD 1 - ARBITRARY - ORTHOGONAL - 100 Disks

speed up (avg=1.2)

(a) Arbitrary, Load 1, Orthogonal

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10 20 30 40 50 60 70 80 90 100

R
un

ni
ng

 T
im

e
R

at
io

 (
pa

ra
lle

l/s
in

gl
e)

Query

LOAD 2 - RANGE - ORTHOGONAL - 100 Disks

speed up (avg=1.19)

(b) Range, Load 2, Orthogonal

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 10 20 30 40 50 60 70 80 90 100

R
un

ni
ng

 T
im

e
R

at
io

 (
pa

ra
lle

l/s
in

gl
e)

Query

LOAD 1 - ARBITRARY - RDA - 100 Disks

speed up (avg=1.18)

(c) Arbitrary, Load 1, RDA
Fig. 10. Experiment 5, Push-relabel Parallel/Sequential Execution Time Ratio, 2 threads, 100 disks

than the other experiments. Since there is no flow conservation
in the black box algorithm, each maximum flow calculation
starts with zero flows. On the other hand, integrated algorithm
conserves the flow values calculated in the previous run and
uses them in the current run.

3) Sequential Push-relabel vs. Parallel Push-relabel: Fig-
ure 10 shows the execution time comparison of the push-
relabel based retrieval algorithm presented in Algorithm 6
with the parallel implementation of the same algorithm using
Experiment 5. Since the performance of the parallel maximum
flow algorithm is highly dependent on the graph structure [31],
we show different queries on the x-axis and the execution time
ratio (parallel/sequential) in the y-axis. Parallel algorithm is
executed using two threads for 100 disks and gains a maximum

speed-up of 1.7X (∼1.2X on average) over the sequential
implementation. The fluctuation in the graph is caused by
the change in the graph structure depending on the query
size. For small queries of load 3 and more than two number
of threads, we observed a load-balancing issue among the
threads. Together with this improvement, integrated algorithm
becomes 4.25X (∼3X on average) faster than the black box
implementation proposed in [12].

VII. CONCLUSION

In this paper, we propose integrated maximum flow algo-
rithms for the generalized retrieval problem where hetero-
geneous disks with initial loads can be located on multiple
sites having different network delays. Our first algorithm is

19

based on the Ford-Fulkerson method and the second algorithm
is based on the Push-relabel technique. We investigate the
execution time of the proposed and existing algorithms for
the basic and the generalized retrieval problems. Experimental
results using various replication schemes, query types, query
loads, disk specifications, site delays, and initial disk loads
show that proposed Push-relabel based algorithms are superior
to the Ford-Fulkerson based algorithms. In addition to this,
integrated push-relabel based algorithm is up to 2.5X faster
than the existing black box counterpart. We also implemented
a parallel version of the proposed push-relabel based integrated
algorithm and observed a speed-up of 1.7X maximum (∼1.2X
on average) over the sequential algorithm. Together with the
parallel implementation, our proposed integrated algorithm
runs up to 4.25X (∼3X on average) faster than the existing
black box algorithm.

VIII. ACKNOWLEDGMENTS

This work is partially supported by Army Research Of-
fice (ARO) Grant W911NF-11-1-0170.

REFERENCES

[1] Dedicated internet access overview. http://www.xo.com/services/
network/dia/Pages/overview.aspx. XO Communications, LLC.

[2] Project webpage. http://gozde.cs.utsa.edu/integrated.
[3] Sun storage 7000 unified storage systems family. http://www.oracle.

com/us/products/servers-storage/039224.pdf, 2009. Oracle, Inc.
[4] Sun storage f5100 flash array. http://www.oracle.com/us/043970.pdf,

2009. Oracle Datasheet. Available online (6 pages).
[5] Adaptec high-performance hybrid arrays (hphas). http://www.adaptec.

com/nr/rdonlyres/a1c72763-e3b9-45f7-b871-a490c29a9b11/0/hpha5
fb.pdf, 2010. PMC-Sierra, Inc.

[6] Nimbus data s-class enterprise flash storage systems. http://www.
nimbusdata.com/products/Nimbus S-class Datasheet.pdf, 2010.

[7] Ramsan-630 flash solid state disk. http://www.ramsan.com/files/
download/212, August 2010. Texas Memory Systems White Paper.

[8] Equallogic ps6100xs hybrid storage array. http://www.equallogic.com/
products/default.aspx?id=10653, 2011. Dell, Inc.

[9] Violin 6000 flash memory array. http://www.violin-memory.com/assets/
Violin Datasheet 6000.pdf?d=1, 2011. Violin 6000 Memory Datasheet.

[10] Zebi hybrid storage array. http://tegile.biz/wp-content/uploads/2012/01/
Zebi-White-Paper-012612-Final.pdf, 2012. Tegile Systems, Inc.

[11] Nihat Altiparmak and A. Ş. Tosun. Equivalent disk allocations. IEEE
Transactions on Parallel and Distributed Systems, 23(3):538–546, March
2012.

[12] Nihat Altiparmak and A. Ş. Tosun. Generalized optimal response time
retrieval of replicated data from storage arrays. http://gozde.cs.utsa.edu/
TR1.pdf, 2012. Technical Report.

[13] Richard J. Anderson and João C. Setubal. On the parallel implementation
of goldberg’s maximum flow algorithm. In Proceedings of the fourth
annual ACM symposium on Parallel algorithms and architectures, SPAA
’92, pages 168–177, New York, NY, USA, 1992. ACM.

[14] David A. Bader and Vipin Sachdeva. A cache-aware parallel imple-
mentation of the push-relabel network flow algorithm and experimental
evaluation of the gap relabeling heuristic. In ISCA PDCS, pages 41–48,
2005.

[15] C.-M. Chen, R. Bhatia, and R. Sinha. Declustering using golden ratio
sequences. In ICDE, pages 271–280, San Diego, California, Feb 2000.

[16] C-M Chen and C. Cheng. Replication and retrieval strategies of
multidimensional data on parallel disks. In Conference on Information
and Knowledge Management (CIKM 2003), November 2003.

[17] C.-M. Chen and C. T. Cheng. From discrepancy to declustering: Near
optimal multidimensional declustering strategies for range queries. In
Proc. ACM PODS, pages 29–38, Wisconsin, Madison, 2002.

[18] L. T. Chen and D. Rotem. Optimal response time retrieval of replicated
data. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 36–44, 1994.

[19] Boris V. Cherkassky and Andrew V. Goldberg. On implementing push-
relabel method for the maximum flow problem. Technical report,
Stanford, CA, USA, 1994.

[20] David Culler, J. P. Singh, and Anoop Gupta. Parallel Computer Ar-
chitecture: A Hardware/Software Approach. Morgan Kaufmann, August
1998.

[21] George B. Dantzig. Application of the Simplex Method to a Transporta-
tion Problem. 1951.

[22] E. A. Dinic. Algorithm for solution of a problem of maximum flow in
networks with power estimation. Sov. Math. Dok, 11:1277–1280, 1970.

[23] H. Ferhatosmanoglu, A. Ş. Tosun, and A. Ramachandran. Replicated
declustering of spatial data. In 23rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 125–135, June
2004.

[24] L. R. Ford and D. R. Fulkerson. Maximal Flow through a Network.
Canadian Journal of Mathematics, 8:399–404, 1956.

[25] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

[26] K. Frikken. Optimal distributed declustering using replication. In 10th
International Conference on Database Theory (ICDT 2005), pages 144–
157, 2005.

[27] K Frikken, M. Atallah, S. Prabhakar, and R. Safavi-Naini. Optimal
parallel i/o for range queries through replication. In 13th International
Conference on Database and Expert Systems Applications (DEXA),
pages 669–678, 2002.

[28] V. Gaede and O. Gunther. Multidimensional access methods. ACM
Computing Surveys, 30:170–231, 1998.

[29] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the
maximum flow problem. Journal of the ACM, 35:921–940, 1988.

[30] A. Guttman. R-trees: A dynamic index structure for spatial searching.
In Proc. ACM SIGMOD, pages 47–57, 1984.

[31] Bo Hong and Zhengyu He. An asynchronous multithreaded algorithm
for the maximum network flow problem with nonblocking global rela-
beling heuristic. Parallel and Distributed Systems, IEEE Transactions
on, 22(6):1025 –1033, june 2011.

[32] P.A. Jensen and J.W. Barnes. Network flow programming. Board of
advisors, engineering. Wiley, 1980.

[33] A. V. Karzanov. Determining the maximal flow in a network by the
method of preows. Sov. Math. Dok, 15:434–437, 1974.

[34] Kurt Mehlhorn and Stefan Näher. Leda: a platform for combinatorial
and geometric computing. Commun. ACM, 38(1):96–102, 1995.

[35] K. Yasin Oktay, Ata Turk, and Cevdet Aykanat. Selective replicated
declustering for arbitrary queries. In Proceedings of the 15th Interna-
tional Euro-Par Conference on Parallel Processing, Euro-Par ’09, pages
375–386, Berlin, Heidelberg, 2009. Springer-Verlag.

[36] S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal, and A. El Abbadi. Cyclic
allocation of two-dimensional data. In ICDE, pages 94–101, Orlando,
Florida, 1998.

[37] H. Samet. The Design and Analysis of Spatial Structures. Addison
Wesley, Massachusetts, 1989.

[38] P. Sanders, S. Egner, and K. Korst. Fast concurrent access to parallel
disks. In 11th ACM-SIAM Symposium on Discrete Algorithms, 2000.

[39] A. Ş. Tosun. Replicated declustering for arbitrary queries. In 19th ACM
Symposium on Applied Computing, pages 748–753, March 2004.

[40] A. Ş. Tosun. Constrained declustering. In International Conference on
Information Technology Coding and Computing, pages 232–237, April
2005.

[41] A. Ş. Tosun. Design theoretic approach to replicated declustering.
In International Conference on Information Technology Coding and
Computing, pages 226–231, April 2005.

[42] A. Ş. Tosun. Threshold based declustering in high dimensions. In
International Conference on Database and Expert Systems Applications,
pages 818–827, August 2005.

[43] A. Ş. Tosun. Analysis and comparison of replicated declustering
schemes. IEEE Transactions on Parallel and Distributed Systems,
18(11):1578–1591, November 2007.

[44] A. Ş. Tosun. Threshold-based declustering. Information Sciences,
177(5):1309–1331, 2007.

[45] A. Ş. Tosun. Multi-site retrieval of declustered data. In 28th Interna-
tional Conference on Distributed Computing Systems. ICDCS ’08, pages
486 –493, june 2008.

[46] A. Ş. Tosun and H. Ferhatosmanoglu. Optimal parallel I/O using
replication. In Proceedings of International Workshops on Parallel
Processing (ICPP), pages 506–513, Vancouver, Canada, August 2002.

20

