
Do we still need IO schedulers for low-latency disks?
Caeden Whitaker, Sidharth Sundar, Bryan Harris, Nihat Altiparmak

Dept. of Computer Science & Engineering, University of Louisville
{caeden.whitaker,sidharth.sundar,bryan.harris.1,nihat.altiparmak}@louisville.edu

ABSTRACT
The performance of recent data storage devices has signifi-
cantly improved over previous generations, with lower la-
tency, greater throughput, and greater parallelism. Since we
now have Ultra-Low Latency (ULL) data storage devices ca-
pable of providing data in less than 10 microseconds, in this
paper we question the need for IO schedulers for better per-
formance and energy efficiency. Specifically, we measure
the latency costs of Linux IO scheduling algorithms and in-
vestigate their impact on overall performance and energy
efficiency using a ULL storage device, a power meter, and
various IO workloads. Our observations indicate that IO
schedulers for ULL storage either do not help or significantly
increase request latencies while also negatively impacting
throughput and energy efficiency. Although we recognize
the value of IO schedulers for slower devices or for other
metrics such as fairness and QoS, we believe that IO sched-
ulers have become unnecessary for ULL devices to improve
performance or energy efficiency.

CCS CONCEPTS
• Software and its engineering → Secondary storage; •
Information systems→ Storage power management.

KEYWORDS
IO scheduler, ultra-low latency storage, energy efficiency

ACM Reference Format:
CaedenWhitaker, Sidharth Sundar, Bryan Harris, Nihat Altiparmak.
2023. Do we still need IO schedulers for low-latency disks?. In 15th
ACMWorkshop on Hot Topics in Storage and File Systems (HotStorage
’23), July 9, 2023, Boston, MA, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3599691.3603400

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotStorage ’23, July 9, 2023, Boston, MA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0224-2/23/07. . . $15.00
https://doi.org/10.1145/3599691.3603400

1 INTRODUCTION
Disk IO schedulers are traditionally used to improve per-
formance of storage devices. For example, a hard disk drive
(HDD) is limited by mechanics—the rotational speed of its
magnetic platter and the movement of its actuator arm. It
is also a sequential device; its read/write head serves only
one request at a time and can more easily access long con-
tiguous regions. In order to use an HDD efficiently, the oper-
ating system must carefully plan, or schedule, the dispatch
of IO requests to the device to obtain efficient actuator arm
movements and reduced seek time. An IO scheduler may
also merge requests of adjacent data to improve sequential-
ity. Using these techniques, effective system software can
save many milliseconds per request through efficient IO
scheduling—large gains when compared to the cost of a few
microseconds of processing. IO schedulers for HDDs are es-
sential and necessary tools for performance in any OS design,
backed by decades of research and understanding.
These properties change when the physical mechanics

are removed. Solid-state drives (SSDs) are based on newer
technologies (such as flash or phase change memory) with-
out the mechanical limitations of HDDs, resulting in greater
performance and lower latency, on the order of 10s of mi-
croseconds. With this improved latency, an IO scheduler
requiring a few microseconds of processing time has become
a significant portion of the response time of an application’s
IO request. In addition, the internal structure or design of
an SSD, such as the flash translation layer (FTL), is typically
managed exclusively by the SSD controller and abstracted
away from the host’s system software. The IO scheduler is
therefore incapable of making scheduling decisions based
on the SSD’s internal architecture, and so the host must
consider the SSD as a random access device; at any time, it
expects to access data at any physical location with simi-
lar latency. There are some specialized (e.g. open-channel,
ZNS) SSDs that expose their internals to the host, but this
management further adds to the costs of system software.
In addition, SSDs are internally parallel, capable of serving
multiple requests simultaneously—support for which is car-
ried to the operating system with advances in interfaces and
bus architectures such as NVMe over PCIe. These changes
in hardware motivate changes in system software; for exam-
ple, a multi-queue design for the Linux block layer (blk-mq)
has replaced the previous single dispatch queue designed
for HDDs, enabling parallel IO dispatching across multiple

44

https://doi.org/10.1145/3599691.3603400
https://doi.org/10.1145/3599691.3603400
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3599691.3603400&domain=pdf&date_stamp=2023-07-10

HotStorage ’23, July 9, 2023, Boston, MA, USA C. Whitaker et al.

CPU cores. Due to the random access and parallel nature of
SSDs, and their abstracted internal structure, the need for
scheduling to achieve performance becomes questionable,
especially considering the now significant processing cost of
scheduling. This relative cost will only increase as devices
become ever faster.
Ultra-low latency (ULL) storage is defined as having less

than 10 µs access latency [15]. Such devices can be based on
flash technology, such as Samsung’s Z-SSDs [3], or phase-
change memory such as Intel’s Optane SSDs [4, 11]. With
less than 10 µs device latency, the relative time spent by
system software becomes ever more significant. Software,
rather than hardware, has now become the bottleneck to
further reducing access latency, motivating a reexamination
of all components in the storage stack. In this paper, we
investigate the costs of IO scheduling using an Intel Optane
ULL SSD, and evaluate if these costs are still worth their
benefits to performance and energy efficiency, while leaving
their impact on fairness and QoS as a future work.

2 BACKGROUND
Traditional disk IO schedulers were designed for hard disk
drives, and reorder requests for efficient access and move-
ment of the physical components of an HDD, while perhaps
also considering application fairness. Since HDDs are se-
quential devices that can typically service only one request
at a time, the operating system uses a single software queue
on which the scheduler operates in order to reorder or merge
requests based on its scheduling algorithm. Previous versions
of Linux that used this single queue design had a choice of
three schedulers: noop, deadline, and completely fair queueing
(CFQ). The noop scheduler is the simplest, which performs
no reorganization of requests (first in, first out), but merges
sequential requests. The deadline scheduler was designed to
prevent starvation by imposing a deadline to start requests.
It generally favors reads over writes, as APIs often block
on reads. CFQ was designed to enforce fairness using per-
process queues, which dispatch requests based on managed
time slices assigned to each queue. As storage devices be-
came faster, and computer systems grew more parallel with
more CPU cores and the introduction of parallel SSDs, this
single queue design (with a single lock) became a perfor-
mance bottleneck. Kernel developers soon considered single
queue systems to be incapable of achieving more than one
million IOPS, regardless of the number of CPU cores [9], thus
motivating a new design.

The Linux multiqueue block design (blk-mq) was fully im-
plemented by kernel version 3.16 (in 2014). This parallel de-
sign provides separate software staging queues for each CPU
core (removing the need for a lock) and multiple hardware
dispatch queues that map to the device driver. Together with
a parallel driver, such as the NVMe interface that specifies

multiple submission/completion pairs on a device controller,
this blk-mq design enables a fully parallel storage stack from
CPU cores to the device controller. The IO scheduler oper-
ates only on the software staging queues, and can reorder
requests within each queue, but not across queues. The sched-
uler can be selected or changed at run time through sysfs [7];
each request queue simply has a pointer to a struct of ker-
nel functions that implement the scheduler. These functions
may be built into the kernel or implemented in dynamically
loaded kernel modules. With blk-mq, IO merging is also
moved outside of the schedulers and performed by default.
The introduction of blk-mq required new implementations
of IO schedulers. Linux currently includes four schedulers:
none is not a “plug and play” scheduler, but rather the code
executed when the pointer to the scheduler’s functions
is NULL. It simply adds new requests to the end of the
software queue, providing a simple FIFO behavior with
no reorganization. It is currently the default scheduler for
many popular distributions such as Ubuntu Linux.

mq-deadline is the revision of the single-queue deadline
scheduler for blk-mq [1]. It uses timestamps to enforce
fairness and achieve quality of service by implementing
queues sorted by requests’ assigned “deadlines,” which
also aims to prevent the starvation of any single request.
mq-deadline is currently the default scheduler for AHCI
devices in Ubuntu Linux.

kyber was originally designed with “fast devices” and “mul-
tiple queues” in mind [2], which uses dispatch tokens to
balance IO across a number of domains. It allows the user
to tune latency goals, and is capable of dynamically ad-
justing the importance of fairness in order to reach those
goals. Namely, kyber can monitor the current average IO
latency relative to the target and adjust the supply of dis-
patch tokens to manage latency. To ensure that synchro-
nous requests are not starved by asynchronous requests,
a proportion of the queue depth is reserve for each type
of request. The policies that kyber uses to manage tokens
were inspired by network routing techniques, mainly from
block buffered writeback throttling (blk-wbt) [2].

bfq is a multi-queue extension of the single queue version
of budget fair queueing, which drew inspiration from cfq.
bfq aims to achieve low latencies for real time tasks [10]
through the use of a large set of heuristics to detect ap-
plication type. Each application is allocated a scheduling
queue [20] and bfq maps requests from many applications
onto the available software queues according to the ap-
plication’s bandwidth budget. The software complexity
of bfq’s heuristics and internal queues likely increases its
processing cost when compared to other IO schedulers.
bfq is currently the default scheduler for AHCI devices in
Fedora Linux, and for Chromebooks [16].

45

Do we still need IO schedulers for low-latency disks? HotStorage ’23, July 9, 2023, Boston, MA, USA

3 METHODOLOGY
3.1 Experimental Setup
Our experiments were run on a Dell PowerEdge R230 (Intel
Xeon E3-1230 quad core, eight threads, 3.4 GHz, 64 GB RAM)
computer with an Intel Optane P4801X Series NVMe SSD as
our storage device. We installed Ubuntu 22.04 and upgraded
the Linux kernel to 5.18. We connected the sole power supply
of our test system to an Onset HOBOUX120-018 Data Logger
[17] to measure the energy consumption of the system. The
system clock of our test system and the power meter were
synchronized using a time server.

3.2 Workloads
First, we use microbenchmark workloads to investigate the
limits of the storage system, using single- and multi-tenant
experiments. Second, we use a macrobenchmark to produce
IO from a real database application.

3.2.1 Microbenchmarks. We used the Flexible IO Tester (fio)
version 3.31 to generate our microbenchmark workloads. We
used io_uring as the IO interface due to its popularity, high-
performance settings, and asynchronous IO capability [8].
Each workload is repeated for each of the four schedulers
none, mq-deadline, kyber, and bfq. We present the average of
five test runs.

To investigate the effects of schedulers, it is useful to have
block layer (blk-mq) queues of significant and known length
on which the schedulers operate, to allow for reordering the
requests. The total number of outstanding requests in the
system is the overall IO depth, which we distribute in two
ways with two workload types: single- and multi-tenant. For
both types, we measure workloads with a total IO depth from
1 to 128 (using powers of 2). Our single-tenant workloads use
a single application process running alone, continuously and
asynchronously submitting requests to maintain the desired
IO depth on a single block layer queue. In contrast, our multi-
tenant workloads use multiple processes submitting single
requests, thus maintaining the total IO depth across multiple
queues. Both single- and multi-tenant workloads submit
three types of requests: random reads, random writes, and
a mixture of 50% reads and 50% writes. In addition, as a
variation on the multi-tenant workloads, we measured an
additional scenario, where half the processes submit 4 KB
reads and the other half submit 8 KB reads.

3.2.2 Macrobenchmarks. In order to draw practical conclu-
sions of schedulers, it is critical to analyze realistic workloads.
fio is able to test the limits of IO in a system because it incurs
minimal CPU overhead in its workloads. However, to demon-
strate a workload with a more realistic mix between CPU
usage and IO, we tested the commonly used RocksDB [6, 18]
key-value store database. In particular, RocksDB is known for

optimizing towards lower latency key-value lookups. This
makes it an ideal application to examine the impact of IO
scheduling on ULL devices, because it is more likely than
non-latency-sensitive applications to benefit from the use of
ULL devices.

The db_bench tool that accompanies RocksDB was used to
generate the macrobenchmarks, which demonstrate the per-
formance and energy efficiency characteristics of IO sched-
ulers. For each benchmark, we had a setup and experimental
phase. In the setup phase, we generated a RocksDB data-
base on our Intel Optane storage device, which otherwise
contained only an xfs filesystem. This database consists of
23M key-value pairs. Each key was 16 bytes and each value
was 4 KB, for a combined 4112 bytes. Since we used no com-
pression, this database consumes approximately 87 GB of
space out of the 93 GB available (due to the filesystem). It
was important to nearly saturate the capacity of our device
to ensure that every memory chip contained data and the
maximum parallel performance could be obtained. In the
experimental phase, we then performed a readrandom work-
load in db_bench to simulate the process of answering a large
number of database fetch requests. We collected information
from db_bench to understand the intensity of the workload
on the database. However, we choose to measure the number
of IO requests and bandwidth through Linux’s /proc/diskstats
interface in order to accurately measure the performance
from the device’s perspective. To understand the energy char-
acteristics of the system when using this workload, we again
measured system power draw throughout the experiment
with the Onset HOBO UX120-018 Data Logger [17]. In order
to control for any variation in the system, storage device,
or database performance, we performed five test runs and
present the sample mean of the resulting data points.

4 EXPERIMENTAL RESULTS
First, we look at the latency cost of IO scheduling, then
investigate the performance and energy efficiency effects of
it using microbenchmarks. Finally, we compare these results
to macrobenchmarks using a real database application.

4.1 Latency cost of scheduling
As storage device latencies become faster, the overhead cost
of the system software to manage requests becomes a greater
portion of the total request latency. Here we look at the time
cost of scheduling by comparing access latencies using the
four IO schedulers.
Table 1 lists the median read and write latencies of one

million 4 KB requests (single process, QD=1) using the four
IO schedulers. The io_uring API has optional features that
can reduce latency and improve single-core performance,
such as polling for completion (opposed to interrupts [23])

46

HotStorage ’23, July 9, 2023, Boston, MA, USA C. Whitaker et al.

Table 1: Median latency (µs) for 4 KB requests

Scheduler Read % diff. Write % diff.
io_uring with defaults

none 12.52 — 16.55 —
mq-deadline 13.39 6.9% 17.65 6.6%
kyber 13.44 7.3% 17.24 4.2%
bfq 15.01 19.9% 19.43 17.4%
io_uring with performance

none 7.81 — 12.19 —
mq-deadline 8.32 6.5% 12.83 5.3%
kyber 8.33 6.7% 12.90 5.8%
bfq 9.41 20.5% 14.18 16.3%

and kernel-side submission queue polling (which reduces
system calls [8]). The top half of Table 1 lists latencies sub-
mitted using io_uring’s default settings, while the bottom
half were submitted using both these performance features,
giving us the lowest latencies we observed overall. We tested
both these default and performance settings for all our mi-
crobenchmarks, and found the trends across schedulers to be
similar. Since these performance features are rather special-
ized optimizations, we present our microbenchmark results
using the default settings as we believe this to be more com-
monly used and more broadly applicable.

The percentage differences in Table 1 are the additional
latency costs added by choosing a particular scheduler com-
pared to none. By choosing mq-deadline or kyber over the
none scheduler, both reads and writes take roughly 6% longer
for both configurations (an additional 0.5–0.9 µs). Choosing
bfq can add as much as 2.5 µs, or roughly 20% to the median
latency of requests. The use and choice of IO scheduler there-
fore adds a significant time cost to IO requests. Notice that
the performance configuration reduces the average latency
by roughly 5 µs in all cases, which is from removing laten-
cies caused by other system mechanisms (system calls and
interrupt handling). Even with the reduced latency of this
performance configuration, the IO scheduler adds a signifi-
cant time cost. This cost is expected to increase with larger
IO depths, as there are more opportunities for the schedulers
to perform reorganization. Next, we investigate if this cost
yields any benefits in performance and energy efficiency.

4.2 Microbenchmark Results
Figures 1 and 2 present the IO performance (IOPS) results
for read, write, and mixed (50% read, 50% write) workloads
in single- and multi-tenant scenarios, respectively. In the
single-tenant experiments, a single-threaded application is-
sues asynchronous IO requests from a single core at increas-
ing IO queue depths, represented by the 𝑥-axis. In the multi-
tenant experiments, the 𝑥-axis represents the number of

(a) Read (b) Write (c) Mixed (50-50)
Figure 1: Performance (IOPS), Single-Tenant

(a) Read (b) Write (c) Mixed (50-50)
Figure 2: Performance (IOPS), Multi-Tenant

47

Do we still need IO schedulers for low-latency disks? HotStorage ’23, July 9, 2023, Boston, MA, USA

tenants, where each tenant (process) issues one request at a
time and can execute on separate cores.

Themicrobenchmark results clearly indicate that IO sched-
uling hurts performance more than helps. For all cases
shared in Figures 1 and 2, none yields either the best IO
performance or ties with other schedulers. The results are
similar for other IO performance metrics that we measured,
including bandwidth, median latency, and tail latency, which
we could not share in the paper due to limited space. For
the 50% read and 50% write mixed workloads, we also mea-
sured the individual performance of read and write flows,
and observed similar trends.
Next, we issue one million IO operations to the storage

device, and measure the total energy consumption of the
system for different schedulers. Figures 3 and 4 present the
system’s total energy consumption in joules per million IOs
for increasing IO depths in single- and multi-tenant scenar-
ios, respectively. Similar to the performance results, none also
yields either the best energy efficiency, or ties with other
schedulers. In other words, IO scheduling hurts energy
efficiency. In various cases, none saves around 200 joules
compared to bfq for every million IO operations completed.
The main reason behind this energy saving is not because
none causes significantly lower power consumption during

the execution of the IO workload, but because none finishes
the same workload much faster than other schedulers in
many scenarios. In other words, none allows more IO oper-
ations to be completed per joule consumed. Finishing the
same IO workload faster can eventually allow the system to
stay in the idle state longer, or even transition into lower
power states earlier as we discuss in Section 6.
We also ran microbenchmarks with mixed request sizes

(4 KB and 8 KB) aswell as different IO interfaces and read/write
mixes, but again did not observe any benefits of IO schedul-
ing in any of our performance or energy metrics. Similar to
other cases, none yielded either the best result or tied with
other schedulers.
4.3 Macrobenchmark Results
Figure 5 illustrates the performance (5a) and energy con-
sumption (5b) impact of IO schedulers using the RocksDB
key-value store, where db_bench’s randomread key-value
lookup workload is used as the macrobenchmark. Similar
to microbenchmark results, these macrobenchmark results
also indicate that IO scheduling does not provide any perfor-
mance or energy benefit. With various IO intensities repre-
sented by IO depths on the 𝑥-axis, none yields the greatest
performance (IOPS) and lowest energy consumption (joules
per million IOs), or ties with other schedulers.

(a) Read (b) Write (c) Mixed (50-50)
Figure 3: Energy consumption, Single-Tenant

(a) Read (b) Write (c) Mixed (50-50)
Figure 4: Energy consumption, Multi-Tenant

48

HotStorage ’23, July 9, 2023, Boston, MA, USA C. Whitaker et al.

(a) Performance (b) Energy consumption

Figure 5: RocksDB — randomread

5 RELATEDWORK
Various IO schedulers have been proposed in the literature
with different goals and characteristics [13, 19, 21, 22, 24].
Among them, two recent ones are Device-Direct Fair Queue-
ing [21] and Multi-Queue Fair Queueing [13]. Device-Direct
Fair Queueing (D2FQ) is specifically designed to reduce the
software cost of IO scheduling in the block layer by mak-
ing use of NVMe weighted round robin (WRR) arbitration,
a method by which the device controller determines from
which hardware submission queue to pull the next requests.
Although WRR arbitration is standardized in the NVMe
specification [5], it is an optional controller feature, and
only round robin (RR) arbitration (without weighted priority
queues) is required by the standard. This requirement of an
additional hardware feature, which is not available on all
NVMe storage devices, limits the usability of D2FQ. Multi-
Queue Fair Queueing (MQFQ) [13], on the other hand, aims
to provide fairness while removing inter-queue communica-
tion that causes synchronization slow-down.
In this paper, we focus on the performance and energy

efficiency impact of the four IO schedulers included in the
official Linux kernel: none, mq-deadline, kyber, and bfq. A
previous work [16] examined using Optane SSDs as swap
space for primary memory in mobile computing applications.
They found that some real-time applications have potential
promise for IO schedulers such as bfq, but found only limited
evidence that IO scheduling could reduce latency in applica-
tions that relied on a ULL SSD for swapping. Although they
looked at energy consumption, it was limited to measuring
the energy consumption of RAM. The use of IO schedulers
withmore traditional SSDs has been investigated in the Linux
user community as well [14], with no attention to energy
efficiency or ultra low latency SSDs.

6 DISCUSSION AND FUTUREWORK
In energy efficiency analysis, it is insufficient to consider only
the power consumption rate of the system when analyzing a
particular software configuration. The performance should
also be tied into the energy efficiency analysis, as finishing

a task faster may allow the system to be idle earlier. For
instance, during our experiments we observed 52 W power
difference between full IO load and immediately after the
workload is completed. Furthermore, while idle, machines
can also switch to lower CPU power states depending on the
idleness period, or can even hibernate. In addition, NVMe
devices can support Autonomous Power State Transitions
(APST), which similarly can reduce power consumption of
the storage device when not under load. Finally, in cloud
computing, energy efficiency is commonly achieved with
energy-aware VM packing algorithms that minimize the
number of active machines needed so that more machines
can be transitioned into lower power states [12].

Our analysis in this work focuses on performance and en-
ergy efficiency of ULL storage device characteristics, specif-
ically using Intel Optane. Although we recognize that IO
schedulers still have value for slower devices such as HDDs,
we believe that using IO schedulers for ULL devices is no
longer needed to achieve performance and energy benefits.
However, one important role of the operating system is to
provide applications with fair and managed access to hard-
ware. Further research is needed to analyze the role of sched-
ulers for the purpose of fairness with ULL storage, and with
ULL SSDs based on technologies other than Intel Optane.

7 CONCLUSION
As storage hardware grows faster, performance bottlenecks
shift more and more towards system software, motivating
operating system designers to reexamine traditional design
decisions made for older, slower hardware. In this paper, we
examined the performance and energy efficiency costs and
benefits of IO schedulers for ultra-low latency (ULL) storage,
specifically an Intel Optane SSD. The use of an IO scheduler
with a ULL SSD adds significant latency to individual re-
quests (Sec. 4.1) and it impairs throughput performance in all
our microbenchmark workloads (Sec. 4.2) and macrobench-
mark using RocksDB (Sec. 4.3). In addition, we measured the
effect of scheduling on energy efficiency of the system, and
found that scheduling impairs IO performance per energy
consumed; therefore not using a scheduler (none) is more en-
ergy efficient. Please note that further investigation is needed
for situations in which fairness or QoS is a priority, or while
using ULL devices with significantly different characteristics
than Intel Optane, such as flash-based ULL devices.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd,
Danny Harnik, for their valuable feedback. This research
was supported by the U.S. National Science Foundation
(NSF) under grants OIA-1849213 and CNS-2050925.

49

Do we still need IO schedulers for low-latency disks? HotStorage ’23, July 9, 2023, Boston, MA, USA

REFERENCES
[1] 2016. mq-deadline multiqueue I/O scheduler.

https://github.com/torvalds/linux/blob/master/block/mq-deadline.c.
[2] 2017. Kyber multiqueue I/O scheduler.

https://patchwork.kernel.org/patch/9672023/.
[3] 2017. Samsung SZ985 Z-NAND SSD.

https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-
NAND_Technology_Brief_v5.pdf.

[4] 2018. Product Brief: Intel Optane SSD DC P4800X Series.
https://www.intel.com/content/dam/www/public/us/en/documents/
product-briefs/optane-ssd-dc-p4800x-brief.pdf.

[5] 2019. NVM Express Base Specification, rev. 1.4.
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-
2019.06.10-Ratified.pdf.

[6] 2022. RocksDB Performance Benchmarking with db_bench.
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools.

[7] 2023. Multi-Queue Block IO Queueing Mechanism (blk-mq).
https://docs.kernel.org/block/blk-mq.html.

[8] Jens Axboe. 2019. Efficient IO through io_uring.
https://kernel.dk/io_uring.pdf.

[9] Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet.
2013. Linux Block IO: Introducing Multi-queue SSD Access on
Multi-core Systems. In Proceedings of the 6th International Systems and
Storage Conference (Haifa, Israel) (SYSTOR ’13). ACM, New York, NY,
USA, Article 22, 10 pages. https://doi.org/10.1145/2485732.2485740

[10] Budget Fair Queueing 2022. Budget Fair Queueing (BFQ) Storage-I/O
Scheduler. http://algo.ing.unimo.it/people/paolo/disk_sched/.

[11] F. T. Hady, A. Foong, B. Veal, and D. Williams. 2017. Platform Storage
Performance With 3D XPoint Technology. Proc. IEEE 105, 9 (Sept
2017), 1822–1833. https://doi.org/10.1109/JPROC.2017.2731776

[12] Logan Hall, Bryan Harris, Erica Tomes, and Nihat Altiparmak. 2017.
Big Data Aware Virtual Machine Placement in Cloud Data Centers. In
4th IEEE/ACM International Conference on Big Data Computing,
Applications and Technologies (BDCAT 2017) (Austin, Texas, USA)
(BDCAT ’17). ACM, New York, NY, USA, 209–218.
https://doi.org/10.1145/3148055.3148057

[13] Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty.
2019. Multi-Queue Fair Queuing. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association, Renton, WA,
301–314. http:
//www.usenix.org/conference/atc19/presentation/hedayati-queue

[14] Michael Larabel. 2020. Linux 5.6 I/O Scheduler Benchmarks: None,
Kyber, BFQ, MQ-Deadline.
https://www.phoronix.com/review/linux-56-nvme.

[15] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee,
and Jinkyu Jeong. 2019. Asynchronous I/O Stack: A Low-latency
Kernel I/O Stack for Ultra-Low Latency SSDs. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19). USENIX Association, Renton,
WA, 603–616.
https://www.usenix.org/conference/atc19/presentation/lee-gyusun

[16] Geraldo F. Oliveira, Saugata Ghose, Juan Gómez-Luna, Amirali
Boroumand, Alexis Savery, Sonny Rao, Salman Qazi, Gwendal
Grignou, Rahul Thakur, Eric Shiu, and Onur Mutlu. 2021. Extending
Memory Capacity in Consumer Devices with Emerging Non-Volatile
Memory: An Experimental Study. ArXiv abs/2111.02325 (2021).

[17] Onset Computer Corporation 2017. HOBO® Plug Load Logger
(UX120-018) Manual. Onset Computer Corporation.
https://www.onsetcomp.com/sites/default/files/resources-
documents/17838-E%20MAN-UX120-018.pdf

[18] Amy Tai, Igor Smolyar, Michael Wei, and Dan Tsafrir. 2021.
Optimizing Storage Performance with Calibrated Interrupts. In 15th

USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21). USENIX Association, 129–145.
https://www.usenix.org/conference/osdi21/presentation/tai

[19] Toby J. Teorey and Tad B. Pinkerton. 1972. A Comparative Analysis
of Disk Scheduling Policies. In Communications of the ACM. 177–184.

[20] Paolo Valente and Arianna Avanzini. 2015. Evolution of the BFQ
Storage-I/O scheduler. In 2015 Mobile Systems Technologies Workshop
(MST). IEEE, 15–20.

[21] Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. 2021. D2FQ:
Device-Direct Fair Queueing for NVMe SSDs. In 19th USENIX
Conference on File and Storage Technologies (FAST ’21). USENIX
Association, 403–415.
https://www.usenix.org/conference/fast21/presentation/woo

[22] Bruce L. Worthington, Gregory R. Ganger, and Yale N. Patt. 1994.
Scheduling Algorithms for Modern Disk Drives. In SIGMETRICS.
241–252.

[23] Jisoo Yang, Dave B. Minturn, and Frank Hady. 2012. When Poll is
Better than Interrupt. In Proceedings of the 10th USENIX Conference on
File and Storage Technologies (San Jose, CA) (FAST ’12). USENIX
Association, USA, 3.

[24] Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj Kowsalya,
Anand Krishnamurthy, Samer Al-Kiswany, Rini T Kaushik, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2015. Split-level I/O
scheduling. In Proceedings of the 25th Symposium on Operating
Systems Principles. ACM, 474–489.

50

https://github.com/torvalds/linux/blob/master/block/mq-deadline.c
https://patchwork.kernel.org/patch/9672023/
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-dc-p4800x-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-dc-p4800x-brief.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://docs.kernel.org/block/blk-mq.html
https://kernel.dk/io_uring.pdf
https://doi.org/10.1145/2485732.2485740
http://algo.ing.unimo.it/people/paolo/disk_sched/
https://doi.org/10.1109/JPROC.2017.2731776
https://doi.org/10.1145/3148055.3148057
http://www.usenix.org/conference/atc19/presentation/hedayati-queue
http://www.usenix.org/conference/atc19/presentation/hedayati-queue
https://www.phoronix.com/review/linux-56-nvme
https://www.usenix.org/conference/atc19/presentation/lee-gyusun
https://www.onsetcomp.com/sites/default/files/resources-documents/17838-E%20MAN-UX120-018.pdf
https://www.onsetcomp.com/sites/default/files/resources-documents/17838-E%20MAN-UX120-018.pdf
https://www.usenix.org/conference/osdi21/presentation/tai
https://www.usenix.org/conference/fast21/presentation/woo

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Experimental Setup
	3.2 Workloads

	4 Experimental Results
	4.1 Latency cost of scheduling
	4.2 Microbenchmark Results
	4.3 Macrobenchmark Results

	5 Related Work
	6 Discussion and Future Work
	7 Conclusion
	References

