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ABSTRACT
With the availability of high performance storage technol-
ogy, there is extra pressure on the efficiency of IO interfaces.
In addition to the popular POSIX synchronous, POSIX asyn-
chronous, and Linux asynchronous (libaio) IO interfaces,
there are two recent interfaces, spdk and io_uring, that are
increasingly attracting attentionwith their high performance
asynchronous designs. While providing high performance
IO is crucial, it is also essential to do so in an energy-aware
manner. In this paper, we study the energy implications of
IO interface design choices and how these choices impact
a system’s energy consumption. Our empirical evaluation
using a power meter, an ultra-low latency storage device, and
various workload behaviors including single and multiple
thread scenarios allow us to lay out the most energy effi-
cient design choices, with the goal of yielding energy-aware
high-performance storage stack designs.

CCS CONCEPTS
• Software and its engineering → Secondary storage; •
Information systems→ Storage power management.
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Table 1: IO Interface Design Choices

API Execution Behavior Submission Completion
kernel user sync async syscall spoll int cpoll

posix-sio
posix-aio
libaio
io_uring
spdk

unsupported, supported

1 INTRODUCTION
IO interfaces allow user applications to issue IO requests
to a secondary storage device. Various IO interface designs
with different characteristics are available across many plat-
forms; however, their characteristics are mainly shaped by
the following four interrelated design choices listed in Ta-
ble 1: (i) kernel vs. user space execution; (ii) synchronous
vs. asynchronous behavior; (iii) system call vs. polling based
IO submission; and (iv) interrupt vs. polling based IO com-
pletion. IO interface design choices are expected to have
different impacts on system components such as CPU and
memory, with unique energy implications. This impact gen-
erally depends on the number of interrupts, system calls,
and context switches they trigger; the number of submis-
sion/completion polls they execute; the overhead of their
runtime system, if any; and their unique usage of file system,
page cache, IO scheduling, and IO driver functionalities.
While providing high performance disk IO is crucial, it

also matters to do so in an energy-aware manner since to-
day’s data centers consume as much electricity as a city [8].
From embedded systems, mobile devices, and personal com-
puters to servers and clusters used in data centers, IO in-
terfaces are heavily used to enable disk IO in a variety of
computer systems. However, efficiency of a storage stack is
generally measured in terms of its performance, whereas its
energy implications are commonly neglected. In this paper,
we measure IO performance per unit energy, and study en-
ergy implications of IO interface design choices. Since low
latency is the common driving factor of new interface design
choices, we use an ultra-low latency (ULL) SSD in our exper-
iments, allowing us to make further analysis for single-digit
microsecond IO latencies.
Our empirical evaluation using a ULL SSD, a power me-

ter, and various workload behaviors indicate that by elim-
inating the need for a system call to submit an IO request,
IO submission polling mechanism reduces the performance

https://doi.org/10.1145/3599691.3603411
https://doi.org/10.1145/3599691.3603411
https://doi.org/10.1145/3599691.3603411
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3599691.3603411&domain=pdf&date_stamp=2023-07-10


HotStorage ’23, July 9, 2023, Boston, MA, USA S. Sundar et al.

gap between kernel bypass and kernel-based interface de-
signs to 1–2 microseconds. However, IO submission polling
also yields worse energy efficiency in general, especially
in multithreaded scenarios as it requires an additional core
to be dedicated by the kernel for each thread. In addition,
while a kernel bypass design achieves the best performance
and energy efficiency for small requests, system call and
interrupt-based kernel-space mechanisms generally yield
better energy efficiency for larger requests due to excessive
polling cost and inability to handle interrupts outside of the
kernel. Finally, interrupt based IO completion is found to
be crucial for achieving the best energy efficiency for larger
request sizes, especially in multithreaded scenarios.

2 IO INTERFACE DESIGN CHOICES
posix-sio [3] is the Linux-native synchronous IO interface,
which includes the traditional POSIX standard read/write
system calls utilizing (kernel) buffered IO by interfacing
with the page cache. Various versions of read/write system
calls exist, including pread/pwrite that accepts a file offset,
readv/writev that performs reads/writes in a vector format
using multiple buffers, and preadv2/pwritev2 (a Linux-only
extension) that also accepts flags to modify behavior, such
as completion polling (cpoll). The common characteristics
of all these interfaces are that they rely on a single sys-
tem call and that they are blocking. In other words, they
halt the execution of the requesting process until the IO
is completed. Synchronous interfaces are generally easier
to understand and use by programmers and are thus more
popular. However, their blocking behavior can cause slow-
downs for certain applications and high performance stor-
age devices such as ULL SSDs [10, 11]. Asynchronous IO is
an alternative to traditional synchronous IO, where rather
than stalling a process, an IO request is submitted and the
associated completion is received later, allowing the submit-
ting process to continue execution in the meantime. There
are multiple asynchronous IO interfaces available with dif-
ferent design choices, including posix-aio [2], libaio [1],
io_uring [4], and spdk [15].
posix-aio is the POSIX standard asynchronous IO interface,
where aio_read/aio_write are asynchronous analogs to the
read/write system calls. However, aio_read/aio_write are not
system calls, they are GNU C library (glibc) functions. posix-
aio is actually a user space implementation of asynchronous
IO, where glibc performs synchronous IO through posix-
sio using a user space thread pool. An aiocb struct is used
to store information about IOs, where requests can be set
up to provide notification about completion by delivery
of a signal. Alternatively, IO completion status can also
be checked with calls to aio_error, and upon completion a
call to aio_return will return the final IO completion status.
The main advantages of posix-aio are its POSIX portability

and usage of page cache. However, its user space runtime
system for thread pool management is expected to have
further performance and energy implications.
libaio is the Linux-native asynchronous IO interface. In
libaio, IO requests are stored in IO command blocks (iocb),
which are thenmapped to IO contexts (aio_context_t). These
contexts are used to connect submission queues (created
using the io_setup system call) to their corresponding return
values, stored in event structs (io_event). Since libaio is a
true asynchronous IO implementation fully supported by
the kernel, all IO requests are handled and scheduled by
the kernel. However, libaio has the major limitation that
it can only operate asynchronously as intended if files are
opened with the O_DIRECT flag. Since the page cache is
bypassed with O_DIRECT , this approach may cause slow-
downs for workloads that would otherwise benefit from
caching, unless caching is implemented at an alternative
layer. In addition, libaio requires two system calls per IO,
one for submission and one to retrieve completion.
io_uring is a relatively new Linux IO interface (added in
2019, kernel 5.1) that provides buffered asynchronous IO
using two ring buffers located in memory shared between
user and kernel space: one for submission events and one
for completion events. One motivation behind using this
shared-memory approach is to eliminate memory copy-
ing between user and kernel space. After setting up the
shared memory region and adding submission requests to
the ring buffer, io_uring has two methods to submit IOs
to the kernel. First, it can perform a regular system call
(syscall) with the io_uring_enter function, which (unlike
libaio) can both submit and reap completed IOs in a single
system call. Alternatively, io_uring can establish a kernel
side submission polling (spoll) thread that continuously
checks the submission ring for new requests, thus elim-
inating the system call. Similar to the latency benefit of
completion polling (cpoll) [14], submission polling is also
expected to help reduce latency, potentially with energy
implications. It supports both polling (cpoll) and interrupt
(int) based completion.
spdk was developed by Intel as an alternative to kernel-
based IO mechanisms, where the kernel is bypassed en-
tirely using a user-space storage stack alternative. This
approach has obvious advantages like eliminating system
calls, switching between user/kernel space, and user/kernel
space memory copying. However, it requires kernel func-
tionalities such as the NVMe driver to be re-implemented,
and if needed by applications, the protection, caching, and
scheduling features of the kernel as well. The Linux kernel
uses dedicated submission queues for each core to reduce
the locking overhead (blk-mq [6]), and similarly, spdk cre-
ates a static number of threads and assigns each individual
thread a submission-completion queue pair from the device
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controller. This way, spdk achieves an asynchronous IO
interface, where IO requests are submitted and a separate
thread polls for completion, upon which a callback func-
tion is invoked to return data to the user. Apart from the
obvious drawbacks of bypassing the kernel, there are sev-
eral key limitations of spdk. First, it implements a lockless
architecture to minimize overhead; however, as a result it
forces applications to control locking if multiple threads
access the same submission/completion queue pair. Further-
more, spdk cannot allocate more queue pairs than the NVMe
device supports (31 in our case), limiting the number of ap-
plications that can use spdk simultaneously. Finally, spdk
requires binding the NVMe device to its own drivers, un-
binding them from the kernel NVMe driver and prohibiting
other IO interfaces from accessing the device.

3 IMPACT OF IO INTERFACE DESIGNS
3.1 Experimental Setup and Methodology
We used an Intel Optane (P4801X) ULL SSD as our storage de-
vice and attached it to a Dell PowerEdge R230 with a single-
socket Intel Xeon E3-1230 quad-core (8 threads, 3.4 GHz)
CPU and 64 GB of RAM as the host device. We used the
xfs file system and installed Ubuntu 22.04 LTS with kernel
version 5.18.19 (the latest stable release compatible with all
tested IO interfaces). We measured the energy consumption
of the system using an Onset HOBO UX120-018 power me-
ter [13]. The HOBO power meter reads several attributes
of the system, including voltage, current, and power levels
with a resolution of once per second. We used the Flexible
IO tester [5] (fio, v3.31) for workload generation, and mea-
sured the IO performance per unit energy, in IOs per joule,
by synchronizing fio’s performance data with the power me-
ter’s energy consumption data. We ran each workload for
two minutes, with 60 seconds of ramp time to enable the
system to reach a steady state before recording data. Further-
more, to keep experimental conditions consistent, we used
the O_DIRECT flag (no page cache) and used the default IO
scheduler, none. Finally, for interfaces that support batch-
ing, we used the default batch size of one. We repeated each
experiment five times and present the mean of replicates.

3.2 Workloads
In order to cover various workload behaviors, we generated
microbenchmarks with 4 KB, 16 KB, and 128 KB random read
and randomwrite requests using fio, and ran experiments for
both single and multithreaded scenarios. In the single thread
case, we used the IO depth feature of fio for asynchronous IO
interfaces to submit multiple outstanding requests from a sin-
gle thread. In the multithreaded case, multiple threads submit
IO requests to the storage device simultaneously spanning
through multiple CPU cores, using both synchronous and

Table 2: Latency (Single Thread, 4 KB, IO Depth = 1)

read (µs) write (µs) avg (%) slower
than spdkInterface Subm. Comp. 50th 99th 50th 99th

spdk — cpoll 6.23 7.47 8.44 10.40 —
posix-sio syscall cpoll 8.69 9.06 11.11 12.24 27.52%
io_uring syscall cpoll 8.65 9.03 14.50 15.93 46.18%
io_uring spoll cpoll 7.89 9.05 12.38 22.33 52.30%
posix-sio syscall int 11.68 12.36 14.08 15.64 67.54%
io_uring spoll int 8.72 11.15 13.34 25.32 72.69%
libaio syscall int 12.35 13.06 16.33 21.87 94.21%
io_uring syscall int 12.73 13.45 16.92 23.61 102.97%
posix-aio syscall int 19.10 28.89 21.60 34.46 220.15%

asynchronous IO interfaces. In both scenarios, we used IO
depths (total number of outstanding requests) of 1, 2, 4, 8, 16,
and 31, where 31 is the maximum number of simultaneous
IO paths spdk supports for our storage device,∗ enough to
saturate it.

3.3 Latency Impact of IO Interface Designs
To analyze the latency impact of IO interface design choices,
we generate 4 KB read and write workloads from a single
thread with an IO depth of 1 and measure the median (50th
percentile) and tail (99th percentile) latencies as shown in
Table 2. In the last column, we calculate an average slowdown
percentage of each design choice compared to spdk, and sort
the table by this value.
We can quickly observe from the table that the kernel

bypass design of spdk yields the lowest IO latency of all
cases, as it achieves a median read latency of 6.23 µs. By
eliminating the need for a system call to submit an IO re-
quest, kernel-side submission polling clearly helps reduce
the latency gap between kernel bypass and kernel-based so-
lutions. For median read latency, this latency gap is reduced
to 1–2 µs when system calls are eliminated using kernel-
side submission polling (io_uring with sp & cp). It should
be noted that for small requests, this still poses a significant
overhead, being 26% slower (7.89 µs) than spdk (6.23 µs) for 4
KB reads. It should also be noted that the submission polling
mechanism of io_uring does not help much in the tail. In
addition, io_uring has a slower write performance compared
to the traditional synchronous posix-sio.
Considering overall performance, posix-sio with com-

pletion polling yields the closest performance to spdk,
being 27% slower on average across mean and tail latencies.
This is surprising as one may expect io_uring to be closest
to spdk due to its incorporation of both submission and com-
pletion polling. The reason posix-sio wins over io_uring lies
in io_uring’s slower write performance, which is not stated
in any previous work to the best of our knowledge.

Finally, posix-aio’s user space asynchronous implementa-
tion results in the highest IO latency in all cases as it has both

∗Our device has 31 pairs, plus one reserved for administration.
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Figure 1: Single Thread, 4 KB, Read

Figure 2: Single Thread, 16 KB, Read

Figure 3: Single Thread, 128 KB, Read

the cost of its thread pool implementation and its reliance on
an interrupt based synchronous IO interface underneath. In
addition, fio checks for completion in user space by continu-
ously polling the aio_error return value, reducing posix-aio’s
performance even further.
3.4 Energy Impact of IO Interface Designs
3.4.1 Single Thread. In single thread experiments, we gener-
ate IO requests from a single CPU core using asynchronous
IO interfaces. The results are provided in Figures 1, 2, and
3 for 4 KB, 16 KB, and 128 KB read requests, respectively.
The 𝑥-axis indicates the IO depth (number of outstanding
requests) and the 𝑦-axis indicates the IO performance (IOPS),
power (W), and energy-efficiency (IOPJ) for the left, mid-
dle, and right figures, respectively. We repeated the same
experiments for writes as well but did not observe any sig-
nificant changes in behavior. Write results are provided for
the multithreaded case in Section 3.4.2. Also, since posix-sio
is not capable of issuing more than one outstanding IO re-
quest at a time due to its synchronous behavior, it is instead
only evaluated as part of the multithreaded experiments in
Section 3.4.2.
The kernel bypass design of spdk achieves the best

energy efficiency in the single thread case for small

request sizes. This is possible thanks to spdk’s high IO per-
formance with a moderate power usage as shown in Figure 1.
However, its energy-efficiency advantage starts disappear-
ing for larger requests sizes, as shown in Figure 2 for 16 KB
requests, and completely disappears for even larger requests
sizes, as shown in Figure 3 for 128 KB requests. For larger
request sizes, system call and interrupt-based kernel
space implementations including io_uring and libaio
achieve the best energy efficiency. The main culprit for
the energy inefficiency of the kernel bypass design of spdk
for larger request sizes is its polling based completion. As re-
quest size gets larger, latency increases. As a result, the cost
of polling for completions becomes more significant, render-
ing kernel bypass designs energy-inefficient as they cannot
utilize interrupts without the help of the kernel. This is a
significant energy limitation of the kernel bypass techniques
for larger request sizes.

As also indicated in Section 3.3 for the IO depth of 1, sub-
mission polling helps reduce the performance gap between
kernel bypass and kernel-based IO interface deigns, where
we see this gap being completely closed at the largest IO
depth as shown in Figure 1 (left). However, the performance
advantage of submission polling disappears as request size
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Figure 4: Multithreaded, 4 KB, Read

Figure 5: Multithreaded, 4 KB, Write

Figure 6: Multithreaded, 128 KB, Read

Figure 7: Multithreaded, 128 KB, Write

gets larger (Figures 2 and 3, left). On top of that, due to its
added power consumption cost (Figures 1, 2, and 3, middle),
polling based IO submission is generally less energy
efficient than system call based IO submission. The only
exception to this is the larger IO depths of small requests as
shown in Figure 1 (right), where submission polling mech-
anisms yield better energy efficiency than system calls in
the single thread case as the number of system calls increase.
However, this behavior does not repeat in the multithreaded
case as we discuss in the next section. The main reason for
the energy inefficiency of submission polling lies in its added
CPU cost, where submission polling requires an additional
core to be dedicated by the kernel for each thread. This can
clearly be seen in the CPU utilization graph shown in Figure 8

(left) for the single thread case, where submission polling
based interfaces use 2 cores, while others use up to one core.
The impact of this behavior is even more dramatic in the
multithreaded case shown in Figure 8 (right).

3.4.2 Multithreaded. Multithreaded results are provided in
Figures 4, 5, 6, and 7 for 4 KB read, 4KB write, 128 KB read,
and 128 KB write workloads, respectively. 16 KB results are
not shared as they did not provide any additional insight.
For multithreaded experiments, we generate IO flows from
multiple threads, where the 𝑥-axis indicates the number of
threads (each with IO depth of 1), and the 𝑦-axis indicates
the IO performance (IOPS), power (W), and energy efficiency
(IOPJ) for the left, middle, and right figures, respectively.
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Figure 8: CPU Utilization, 4 KB, Read

One interesting observation that we can make in the mul-
tithreaded case is the high energy consumption of the kernel
bypass design of spdk as well as the interfaces that rely
on submission polling mechanism, especially for increasing
number of threads (Figures 4, 5, 6, and 7, middle). This be-
havior is also correlated with their CPU core usage shown
in Figure 8 (right), where both designs quickly reach 8 cores
(maximum in our system). Since this added power consump-
tion is not sufficiently compensated for by their IO perfor-
mance, both kernel bypass and submission polling based
designs generally end up being less energy efficient than the
traditional posix-sio in multithreaded scenarios, especially
for higher number of threads.
For larger request sizes (Figures 6 and 7), spdk and sub-

mission polling based interfaces are among the worst for
energy efficiency. Considering all request sizes (Figs. 4–7),
posix-sio generally provides the best energy efficiency
in the multithreaded case, using its polling version for
smaller requests and its interrupt version for larger
requests. It is important to note that posix-sio is not capable
of issuing more than one request at a time due to its synchro-
nous behavior, whereas the system call based io_uring (reads)
or libaio (writes) are alternative energy-efficient designs in
multithreaded scenarios requiring asynchronous capability.
Finally, as also observed in the single thread case, inter-

rupt based IO completion is crucial to achieving the
best energy efficiency for all interfaces when the re-
quest size gets larger. Therefore, it is very important to
design polling based IO completion mechanisms carefully.
Figures 6 and 7 (right) clearly show for both reads and writes,
respectively, how the current polling based interfaces yield
the worst energy efficiency as they cannot selectively use
interrupts, motivating dynamic approaches.

4 RELATEDWORK
In addition to the traditional IO interfaces posix-sio [3], posix-
aio [2], and libaio [1], two newer interfaces recently became
available: spdk [15] and io_uring [4]. A previous work re-
lated to these interfaces is xNVMe [12], which provides a
user space abstraction layer for submitting IO requests in an

interface independent way so that changing IO interface in
the application does not require refactoring the code. There
is also an extensive body of work on improving the perfor-
mance of the storage stack [9, 10, 16, 17]. However, none of
these works focus on IO interface design specifically, and
their analyses focus on the performance improvement or
penalty of the introduced method, as in xNVMe.

There is only one previous work so far that systematically
analyzes IO interface characteristics [7], in which the authors
provide performance analysis for libaio, spdk, and io_uring
using 4 KB read-only workloads issued on a flash-based SSD.
We observed similar performance trends; however, our main
focus in this paper is the energy implications of IO interfaces
by investigating not only libaio, spdk, io_uring, but also posix-
sio and posix-aio design choices. In addition to 4 KB reads, we
also analyzed write and multithreaded workloads in various
request sizes using an ULL SSD allowing us to make cost
analysis for single-digit microsecond IO latencies. To the
best of our knowledge, no other work has so far investigated
the energy implications of IO interface design choices.

5 DISCUSSION AND CONCLUSION
In this paper, we investigate the energy implications of IO
interface design choices using a power meter and an ultra-
low latency storage device. Our experiments indicate that
kernel bypass designs provide the lowest latency; however,
they can also have serious energy implications for larger
request sizes as they cannot utilize interrupt based comple-
tion. Kernel-side submission polling is a promising method
to close the performance gap between kernel-based and ker-
nel bypass designs, as it can reduce the latency difference to
1–2 µs. However, as in any polling mechanism, if not care-
fully designed, it can also incur a serious energy penalty. For
better energy efficiency, it is crucial to design polling based
IO submission and completion with careful consideration of
poll duration. Shorter poll durations can yield more energy
efficient designs than system call based submission and inter-
rupt based completion mechanisms for smaller request sizes,
while longer poll durations can negatively impact energy
efficiency for larger request sizes or multithreaded scenarios.
Hybrid IO submission and completion mechanisms capable
of selectively using the most appropriate method have the
potential to provide energy-aware high performance storage
stack designs.
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