
Dynamic Data Layout Optimization for High

Performance Parallel I/O

Everett Neil Rush, Bryan Harris, Nihat Altiparmak

Department of Computer Eng. & Computer Science

University of Louisville, KY 40292

{e.rush,bryan.harris.1,nihat.altiparmak}@louisville.edu

Ali Şaman Tosun

Department of Computer Science

University of Texas at San Antonio, TX 78249

ali.tosun@utsa.edu

Abstract—Storage performance bottlenecks are one of the

major threats limiting the scalability of I/O intensive applica-

tions. Parallel storage systems have the potential to alleviate

I/O bottlenecks through concurrent operation of independent

storage components if a parallelism-aware data layout can be

continuously guaranteed. Existing systems use one-layout-fits-all

data placement strategy that frequently results in sub-optimal I/O

parallelism. Guided by association rule mining, graph coloring,

bin packing, and network flow techniques, this paper proposes a

general framework for self-optimizing parallel storage systems,

with the goal of continuously providing a high-degree of I/O

parallelism that is robust to changes in the parallel access

patterns of applications and the coexistence of applications

with different parallel access characteristics. Evaluation results

indicate that the proposed framework is highly successful in

adjusting to skewed parallel access patterns for both traditional

hard disk drive (HDD) based storage arrays and solid-state drive

(SSD) based all-flash arrays. In addition to the storage arrays,

the proposed framework is sufficiently generic to be tailored to

various other parallel storage scenarios including but not limited

to key-value stores, parallel/distributed file systems, and internal

parallelism of SSDs.

Keywords-storage systems; parallel I/O; self-optimization

I. INTRODUCTION

Many real-world applications are I/O intensive in nature

and have strict latency requirements typically specified in

service-level agreements (SLA). High performance parallel

storage systems have the potential to provide low-latency and

high-throughput I/O performance through concurrent operation

of individual storage components if a parallelism-aware data

layout can be continuously guaranteed. Storage arrays are well

known examples of high performance parallel storage systems.

Although hard disk drive (HDD) based storage arrays (HSA)

still dominate the market, all-flash arrays (AFA) composed of

solid state drives (SSD) have received a considerable attention

recently due to their random access nature and superior parallel

I/O potential [1]. Various manufacturers including NetApp,

EMC, Pure Storage, and HP/3Par have already launched their

AFAs. In addition to the storage arrays, other parallel storage

scenarios include key-value stores and parallel/distributed file

systems built on clusters, and SSDs themselves featuring

various levels of internal parallelism. In the rest of this paper,

we use storage arrays as an example parallel storage system;

however, the proposed techniques are sufficiently generic and

can easily be adapted to other parallel storage scenarios.

Striping and declustering are two common techniques for

data placement in parallel storage systems. The data space is

partitioned into disjoint regions (blocks, stripes, or chunks)

and distributed over independent storage components (called

hereafter disks) so that requests spanning different disks can

be retrieved in parallel. As well as HSAs, existing AFAs come

with traditional RAID [2] techniques originally designed for

HDDs to statically distribute data over disks. In addition, sev-

eral advanced declustering methods have also been proposed

for the static placement of data [3, 4]. For better parallelism,

a common approach in declustering is to assume a certain

disk access pattern. For instance, the technique proposed in

[4] is optimized specifically for range queries where a range

of values are searched in a multi-dimensional dataset as in

databases. However, the disk access patterns of applications

change over time, and many realistic workloads are known to

be skewed in practice [5, 6]. Also, various applications using

the same storage system can have different access patterns.

Therefore, a data placement optimized for a specific disk

access pattern may not perform well in general. In order to

utilize parallel disks to their full potential, parallelism-aware

dynamic data layout optimization is necessary.

This paper proposes a framework for self-optimizing par-

allel storage systems that can automatically adapt themselves

to skewed, changing, and coexisting disk access patterns. The

proposed framework detects block-level disk access correla-

tions using association rule mining techniques, periodically

redistributes the correlated blocks into separate disks for

improved I/O parallelism using graph coloring and bin packing

techniques, and while doing this introduces a minimal amount

of data movement using min-cost flow techniques. The main

contributions of this work can be summarized as follows:

• We propose a novel I/O parallelism-aware self-

optimization framework based on access correlations.

• We theoretically analyze the complexity of the

correlation-based placement problem and show that

it is NP-complete using reduction from graph coloring.

• We formulate placement and reorganization as separate

optimization problems and propose an efficient heuristic

for placement and a polynomial-time optimal algorithm

for reorganization.

• We provide extensive performance evaluations and cost

analysis on both HSAs and AFAs using real workloads.

2016 IEEE 23rd International Conference on High Performance Computing

978-1-5090-5411-4/16 $31.00 © 2016 IEEE

DOI 10.1109/HiPC.2016.26

132

II. BACKGROUND AND MOTIVATION

In this section, we first provide the preliminaries of data

placement, access patterns, and correlations in parallel storage

systems. Next, we present the motivation and related work.

A. Data Placement and Parallel Access Patterns

Efficient data placement is crucial in parallel disk architec-

tures to enable concurrency and high performance parallel I/O.

Figure 1(a) presents an example data placement strategy called

periodic declustering [3], where a two-dimensional dataset

composed of 25 data blocks is distributed over 5 disks. Each

square of the grid denotes a data block (a disjoint region of

the dataset) and the number in the square denotes the disk that

holds the block. In this dataset, a sample disk request can be

an i× j range query having i rows and j columns. For retrieval

of i · j blocks from N disks, the best we can expect is � i· j
N
�

parallel accesses, and this happens if the blocks of the request

are spread across the disks in a balanced way.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

R1

0
0

0
0

0

1
1

1
1

2
2

2
2

2

4
4

4
4

3
3

3
3

3

14
R2

(a) Static Layout

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

R1

0
0

0
0

1
1

1
1

2
2

2

24

3

3
3

3

R2

4 2
40
34

41

(b) Dynamic Layout

Fig. 1: Data Layout and Parallel Access

Consider the request R1 shown in Figure 1(a) with a

rectangular frame, which is a 1×5 range query requesting 5

data blocks. Since each of the requested data blocks are stored

in a different disk, retrieval of this request requires 1 parallel

access, which is the optimal number of parallel accesses we

can achieve for 5 blocks and 5 disks (� i· j
N
�= � 1·5

5
�= 1). This

optimal result for the request R1 is not actually surprising

since periodic declustering is optimized for range queries.

If the storage system receives range queries exclusively, then

such a placement technique is expected to perform well. How-

ever, the disk I/O performance of applications will decrease

dramatically when they change their parallel access patterns

and issue requests other than range queries. For example,

consider the request R2 shown in Figure 1(a) marked with

red diagonally pattered blocks. R2 is also composed of 5

data blocks as R1; however, R2 is not a range query, it is

an arbitrary query. In this case, since all the blocks of R2 are

stored in disk 4, retrieval of this request requires 5 parallel

accesses, resulting in a sub-optimal device concurrency and

parallel I/O performance. In order to boost the concurrency of

parallel disks, a self-optimizing data reorganization framework

that can automatically adapt to changing and coexisting disk

access patterns is necessary. We believe that such a framework

can be built using block correlations within each request and

among consecutive requests.

B. Block Correlations

Block correlations indicate that two or more blocks are

correlated if they are requested together, or if they are re-

quested within a very short time interval so that they are

queued and handled together by the storage sub-system [7].

For example, consider the request R1 from Figure 1(a) again

and assume that the notation [i, j] denotes the block in row i

and column j. Based on this notation, the correlated blocks

for the request R1 are [0,0], [1,0], [2,0], [3,0], [4,0]. When

we consider the request R2 itself, we can observe that the

blocks [0,2], [1,4], [2,1], [3,3], [4,0] are also correlated. Block

correlations can exist intra-request (from the same request)

or inter-request (among different requests). Once the block

correlations are detected, I/O parallelism can be improved

dramatically by placing the correlated blocks in separate disks.

In addition, correlation strengths can be determined based on

their frequencies and can be used in heuristic methods when

the optimal data layout for all requests is not feasible. Consider

the requests R1 and R2 in Figure 1(a) again and assume that

these two requests are made frequently. Remember that R2 was

yielding sub-optimal device concurrency and I/O parallelism

by requiring 5 parallel accesses while R1 was optimal by

requiring 1 parallel access. Based on their block correlations

listed above, data layout optimization for both R1 and R2

can be performed as in Figure 1(b), resulting in optimal I/O

parallelism for both requests.

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1 1.2

S
ta

rt
in

g
bl

oc
k

nu
m

be
r

(t
ho

us
an

ds
)

Request number (millions)

wdev Trace Heat Map

(a) Web Server

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
ta

rt
in

g
bl

oc
k

nu
m

be
r

(t
ho

us
an

ds
)

Request number (millions)

src2 Trace Heat Map

(b) Version Control Server

Fig. 2: Storage Heat Maps of Real Applications

Block correlations are commonly encountered in storage

workloads. We observed this while analyzing the storage

traces of various enterprise and production servers from Mi-

crosoft [8]. To illustrate, Figure 2 shows the storage heat maps

of a web server and a version control server. The x-axis in

the figures shows the request number starting from zero in

chronological order and the y-axis shows the starting block

number (may be shifted on y-axis to eliminate gaps) of the

requests. Blocks falling in a certain range of x values are

generally considered to be correlated. Existing patterns in the

figures clearly indicate the occurrence of block correlations,

and heavy repetition of these patterns motivates the use of a

correlation-based dynamic layout optimization. In addition to

Microsoft applications, Google also reveals the existence of

block correlations in their workloads by specifically designing

their Spanner database to co-locate multiple directories that are

frequently accesses together [9]. As well as the correlations,

various additional information can also be extracted from

the storage traces and utilized in reorganization, including

correlation strengths and correlation types (Read/Write).

III. RELATED WORK

Although static placement received more attention [1–

4], dynamic data reorganization techniques targeting single-

and multi-disk HDDs were also proposed. Among the ones

133

targeting single disks [7, 10–12], block correlations were

first utilized in [7] for prefetching purposes and arranging

correlated blocks contiguously in a single HDD for reduced

seek time. Similar techniques were also applied in [10] and

[11] to reorganize hot data blocks sequentially on a dedicated

partition of a single HDD, and in [12] to replicate hot blocks in

free disk space. However, these techniques target single HDDs

for reduced seek time without focusing on I/O parallelism.

Dynamic data reorganization for HDD-based parallel disks

was first investigated in [13], in which the authors detect

hot disks and use disk cooling heuristics to move some

data from hot disks to cooler disks. Their heuristic keeps

cooling disks until their heat drop below a given threshold.

In order to achieve this, the authors assume that certain

disk access patterns can be estimated a priori without a disk

access monitoring mechanism, which is against the spirit

of dynamic data reorganization. Authors in [14] focused on

frequent seeks occurring within the individual disks of an

HDD array and proposed a data reorganization technique

decreasing the seek distance instead of focusing on device

concurrency and I/O parallelism. A dynamic data reorganiza-

tion technique for hybrid storage arrays composed of SSDs

and HDDs is proposed in [15], where the blocks are labeled

as write-exclusive, read-exclusive, and read-write, then placed

in storage devices considering the distinct features of HDDs

and SSDs such that read-heavy blocks are directed to SSDs

and write-heavy blocks are directed to HDDs. This approach

does not consider I/O parallelism and can be applied in

hybrid storage systems together with our proposed parallelism

techniques. Most recently, authors in [16] extended the hot

block prefetching idea proposed in [7] for single disks to

parallel disks and applied prefetching, where additional copies

of the frequently accessed blocks are created and cached.

IV. DYNAMIC LAYOUT OPTIMIZATION FRAMEWORK

Our proposed dynamic data layout optimization framework

is composed of the following four building blocks:

• Disk I/O Monitoring Module: Monitors disk I/O re-

quests and records the block numbers that are requested

together in sessions.

• Data Analysis Module: Analyzes the recorded sessions

to detect block correlations.

• Placement Planning Module: Plans a new placement

strategy based on the detected block correlations.

• Data Reorganization Module: Performs the reorganiza-

tion by minimizing the data movement.

An overview of the proposed framework is provided in Fig-

ure 3. In summary, our framework monitors disk I/O requests

directed to the storage system and periodically optimizes the

data layout based on the detected disk access correlations. The

rest of this section describes each component of the proposed

framework in more detail.

A. Disk I/O Monitoring Module

Block level requests can be monitored using a disk I/O

tracing tool such as blktrace [17], which can provide detailed

information about each disk request including its timestamp,

Data

Module
Analysis

...

Data Reorganization Module

...

Monitoring
Module Module

Placement
Planning

Requests
Disk I/O

Disk I/O

Self Optimizing Parallel Disks

Fig. 3: Overview of the Proposed Framework

event type (queued, completed, etc.), process name/ID of the

application making the request, request type (Read/Write),

starting block ID of the request, and the size of the request

in blocks. Using this information, the monitoring module can

divide the requests into sessions, where each session represents

a set of blocks requested (or handled) together by the storage

subsystem, and store these sessions line by line. A sample

monitoring output is provided in Figure 4(a) composed of three

sessions, indicating that blocks 1, 2, and 3 are requested in the

first session, blocks 1, 3, and 4 are requested in the second

session, and blocks 4 and 5 are requested in the third session.

1 2 3
1 3 4
4 5

(a) Monitoring Output

1 2 (1)
1 3 (2)
1 4 (1)
2 3 (1)
3 4 (1)
4 5 (1)

(b) Analysis Output

Fig. 4: Monitoring and Analysis Outputs

B. Data Analysis Module

The data analysis module is responsible for analyzing the

sessions generated by the monitoring module and finding

correlations between blocks using association rule mining

techniques. A common way to determine association rules is

using Frequent Itemset Mining (FIM) algorithms [18].

1) Frequent Itemset Mining (FIM): FIM algorithms can

find block correlations as well as the frequency of the cor-

relations indicating their strengths. The original motivation of

FIM was the need to analyze supermarket customer behavior

to discover which products were purchased together and with

what frequency. Using this information, supermarkets can

place correlated products next to each other on the shelves

to boost their sales. Our layout optimization idea is motivated

by the product placement idea of supermarkets, with a minor

difference that we propose to place the correlated blocks

into separate disks to boost concurrency and parallel I/O

performance. FIM algorithms accept a minimum frequency

amount called support so that the algorithm can skip the

correlations occurring less than this value.

Mining the sessions provided in Figure 4(a) using the

FIM techniques for support = 1 returns the output shown in

Figure 4(b). Note that mining only for the correlated block

pairs (set size = 2) is enough for our purposes since the pairs

will include larger size correlations within themselves. In each

134

row of the FIM output in Figure 4(b), the first two numbers

represent the ID of the correlated blocks and the third number

in parentheses represents the frequency of this correlation. In

other words, blocks 1 and 2 are requested together once, blocks

1 and 3 are requested together twice, and so on.

C. Placement Planning Module

The aim of the placement planning module is to use block

correlations produced by the data analysis module and to plan

a new correlation-based data placement strategy that boosts

concurrency and I/O parallelism. However, optimal placement

is a challenging problem, even in simplified cases. In order to

show its complexity, we formulate the correlation-based basic

placement planning as an optimization problem as follows:

Problem Definition 1. Basic Layout Optimization Problem

(BLOP): Given a set C of correlated block pairs (i, j), and N

disks; plan a placement strategy so that for every block pair

(i, j) ∈C, blocks i and j are stored in different disks.

Theorem 1. BLOP is NP-complete and equivalent to the

proper (vertex) k-coloring problem [19] for k = N.

Proof: Construct an undirected correlation graph G(V,E)
such that each vertex v ∈ V represents a unique block in C

and each edge (u,v) ∈ E represents a correlation between

blocks (u,v) ∈C, as shown in Figure 5(a) for the correlations

provided in Figure 4(b). Then, the proper k-coloring of G,

which colors the vertices of G with a maximum of k colors

such that adjacent vertices receive different colors (as shown

in Figure 5(b)) is equivalent to BLOP for k = N where each

color represents a unique disk. Since proper k-coloring is NP-

complete, BLOP is also NP-complete.

Based on the above proof, we are able to reduce our sim-

plified placement planning problem into a type of classic NP-

complete Vertex Coloring Problem (VCP) called the proper k-

coloring. Vertex coloring is a well studied problem and various

heuristics are proposed, analyzed, and optimized. Therefore,

by reducing our problem to this well-known problem, we

can adapt these heuristics as our placement planning strategy

instead of proposing an entirely new and unproven heuristic.

1

5

43

21

1

1

1
2

1

(a) Original Graph

1

5

43

21

1

1

1
2

1

RED

RED

GREEN

BLUE

BLUE

(b) Colored Graph

Fig. 5: Placement Planning Output

Although BLOP outlines the main purpose of our placement

planning strategy, it is simplified and requires additional

considerations to be applied in real world settings. First of all,

since the number of vertices (blocks) in the graph is expected

to be much larger than the number of colors (disks) available,

|V | � N; a proper N-coloring of the generated graph G(V,E)
is generally not expected to be feasible. Therefore, a more

practical approach is to color the graph by minimizing the

conflicts, the number of edges having both vertices with the

same color. This technique is called soft coloring [20]. Also,

in real world settings each disk has a maximum capacity

not to be exceeded, and therefore disk capacities should be

considered while planning the placement. In order to handle

disk capacities, we can use traditional bin-packing techniques,

where every color (disk) is assigned a maximum capacity in

bytes based on the disk capacity limit and every vertex (block)

has a weight in bytes based on the block size. Including these

two modifications, our placement planning problem becomes

equivalent to another NP-complete problem called the Min-

Conflict Bin Packing (MCBP). We skip the equivalence proof

here since it follows from the proof of Theorem 1, and directly

provide the definition of MCBP:

Problem Definition 2. Min-Conflict Bin Packing (MCBP):

Given a set I of items i of size wi, N bins of size W , and

a conflict graph G = (I,E) where (i, j) ∈ E if items i and

j cannot be packed in the same bin, compute the minimum

number of conflicts that must occur if the set I is packed in

N bins of size W .

MCBP is defined in [21] as a combination of soft col-

oring and bin packing problems, and an effective heuristic

is provided for problems closer to coloring than packing

as in our case. Based on this heuristic, initially colors are

mapped to vertices randomly. Next, a random vertex i having

conflicts with some other vertices is chosen, and the color c

that locally minimizes the total number of conflicts without

violating the capacity constraint of c is mapped to i. Ties

are broken randomly and the algorithm continues until no

constraint is violated or until some given termination criterion

is met. Our proposed placement planning heuristic tailors the

MCBP heuristic to our specific problem type and it has the

following four properties:

P1 Instead of starting with a random color-to-vertex map-

ping, we map the colors to vertices based on the original

data placement. This property allows us to eliminate

unnecessary data movements in the future.

P2 Instead of a random iteration order, we perform local

optimization in decreasing order of Total Correlation

Frequency (TCF) of the vertices, where the TCF of a

vertex can be calculated by summing the weights of all its

edges. This property prioritizes the movement of blocks

having more correlations with other blocks.

P3 We store the correlation strengths in the edge weights

and our conflict calculation during the local optimization

process considers these edge weights. In other words,

we count each conflict based on the strength of the

correlation instead of counting each of them only once.

This way, block correlations occurring more frequently

than others are given more importance.

P4 If there are more than one candidate color that can be

mapped to a vertex, we break the tie by choosing the

color having more available capacity instead of a random

selection. This property helps to balance disk loads.

135

Our placement planning heuristic is provided in Algo-

rithm 1. Each vertex v ∈ {1, . . . , |V |} represents a block and

each color c ∈ {1, . . . ,N} represents a disk, where N is the

total number of disks in the system.

Algorithm 1 Placement Planning Heuristic

1: Color the vertices based on the original data placement
2: caps (1, . . . , N) = initial disk capacities in bytes
3: for v ∈V do

4: v.tcf = 0
5: for u ∈ v.adj do

6: v.tcf += (u,v).weight
7: S (1, . . . , |V |) = vertices sorted by tcf in descending order
8: repeat

9: for i← 1 : |V | do

10: v←S[i]
11: confs (1, . . . , N) = 0

12: for u ∈ v.adj do

13: confs[u.clr] += (u,v).weight
14: for c← 1 : N do

15: if (confs[c] < confs[v.clr] and caps[c] + w < W) or

(confs[c] == confs[v.clr] and caps[c] + w< caps[v.clr])
16: caps[v.clr] -= w

17: v.clr = c

18: caps[c] += w

19: until Δconficts < ε

The heuristic begins by initializing the graph and the

necessary data structures at lines 1–7. At line 1, a vertex v is

given a color c if the block corresponding to v was originally

stored in the disk corresponding to c (P1). Line 2 initializes

the caps array using the initial disk capacities in bytes. Next,

TCF values of the vertices are calculated at lines 5–6 and

sorted in descending order at line 7. Local optimizations

are performed at lines 9–18 starting from the vertex having

the maximum TCF value (P2). Line 11 initializes the confs

array that records how many conflicts would result if vertex

v was assigned to color c. Lines 12–13 fill the confs array

by visiting all the adjacent vertices of v and summing their

edge weights (P3). At line 15, we map the color c to vertex

v if c has fewer conflicts than v’s current color respecting

the disk capacities. If c and v’s current color yield the same

number of conflicts, then we break this tie by choosing the

color that has the most available capacity (P4), where W is

the maximum safe disk capacity in bytes and w is the block

size in bytes. A safe value for W can be determined based on

the load balancing threshold of the disks and the maximum

block movements permitted to a disk. Local optimizations

shown in lines 9–18 are repeated until the number of conflicts

does not improve from the previous iteration by a predefined

percentage ε. Based on our experiments, we found ε = 5% to

be an efficient stopping criterion according to the number of

iterations it causes and the performance improvement it yields

in the framework. Although it was not necessary for our case,

an additional condition can be added in line 19 to bound the

number of iterations by a constant.
1) Complexity Analysis: Our graph is undirected and we

use an adjacency list for iteration. Since the size of an

adjacency list in an undirected graph is 2|E|, iterating through

all the vertices in the adjacency list is O(|V |+ |E|), which is

performed at lines 3–6 and lines 9–13. At line 7, sorting the

vertices by their TCFs is O(|V | log |V |). Local optimizations

are repeated a constant number of times at line 8, bounded

by the condition at line 19, and the for loop at line 14 is also

iterated a constant number of times since the number of colors

(disks) N is limited. Therefore our heuristic has the worst-case

time complexity of O(|V | log |V |+ |E|). Note that our graph

type is expected to be on the sparse side.

D. Data Reorganization Module

The purpose of the data reorganization module is to map

the colors returned by the placement planning heuristic to

the disks so that the block movement during reorganization

is minimized. The proposed placement planning heuristic

initially assumes a preliminary color-to-disk mapping based

on property P1 of the heuristic, and the motivation behind

this was to keep the original data placement as stable as

possible, eliminating unnecessary block movements. However,

since the original block colors can change considerably at the

end of the heuristic, it is necessary to reconsider the color-to-

disk mapping again to guarantee the minimum block move-

ment. Therefore, by using the colored graph returned by the

placement planning module, the data reorganization module

reorganizes the block placement on the disks considering the

following two criteria:

• Each color is mapped to a separate disk.

• The number of block movements are minimized.

A brute force solution satisfying the two criteria listed above

would work as follows:

• Consider all possible N!
(N−C)! color-to-disk mappings for

C colors and N disks; where C ≤ N

• Calculate the amount of blocks to be moved for each

possible mapping.

• Choose the mapping yielding the minimum amount of

block movements.

This brute force solution guarantees the optimal solution,

and it might work efficiently for small values of N or C.

However, it is obvious that this brute force technique would

require unacceptably high execution time for larger values of

N due to its factorial time complexity. Therefore, the brute

force technique is impractical for real systems, even for storage

systems having more than N = 13 disks. A better solution

would be finding the optimal mapping in polynomial time,

which can be achieved by constructing the problem as a

flow network and solving it using the minimum cost flow

techniques [22] as follows:

• Using the colored graph returned by the placement plan-

ning module (see Figure 5(b)), generate a directed flow

graph G(V,E) as shown in Figure 6 such that for each

color and for each disk in the system, a vertex is created.

In addition, two more vertices called source (s) and sink

(t) are created.

• Draw an edge from source to every color vertex, from

every color vertex to every disk vertex, and from every

disk vertex to sink.

• Set the capacities of all the edges to 1.

136

• Set the costs of the edges to 0 except the edges between

a color vertex and a disk vertex. The cost of the edge

between a color vertex and a disk vertex is set to the

amount of the data movement caused by such mapping.

• Set the source as the supply node supplying flows in the

amount of colors C, sink as the demand node demanding

C flows, and the rest of the vertices as the transshipment

nodes not supplying or demanding any flow.

Running a minimum cost flow algorithm on the constructed

flow graph shown in Figure 6 will return the optimum color-

to-disk mappings yielding the minimum data movement. The

flow directions shown in Figure 6 with thick lines indicate the

optimum reorganization schedule for the example shown in

Figures 4(a), 4(b), 5(a), and 5(b) assuming an initial round-

robin placement. Minimum cost flow problems can be solved

in polynomial time and complexity can be reduced for graphs

with unit capacities as in our case. Recently, authors in [23]

proposed a O(|E|3/2 log(|V |Cmax)) complexity algorithm for

unit capacity graphs, where Cmax is the maximum cost value.

DISKS

s t

RED 0

1

2

GREEN

BLUE

COLORS

Fig. 6: Min-Cost Flow Graph for Minimum Data Movement

E. Additional Optimizations for HDD-based Systems

Flash is an inherently random access medium not including

the variable access time of spinning disks. Flash accesses the

desired address with almost uniform access time, regardless of

where the requested data resides in the SSD’s logical address

space. Therefore, concurrency is very crucial for SSD-based

all-flash arrays. On the other hand, random I/O in an HDD

requires the device to first position the read/write head on

the correct cylinder (seek time), and then wait while the disk

rotates to the correct sector (rotational latency); causing a

variable access (positioning) time. Although the proposed con-

currency techniques will immediately boost the performance

of HDD-based parallel disks for many realistic workloads,

the internal disk geometry of HDDs should not be ignored

completely since an additional performance improvement can

be achieved for certain workloads if the access sequentiality

of the individual HDDs can be preserved as much as possible

while boosting the concurrency of parallel HDDs.

As an illustration, assume a request R, which is composed

of ten correlated blocks and assume also that these blocks are

stored in a single disk sequentially. In this case, retrieval of

R requires a single positioning time (seek+rotational latency)

since the blocks are sequential. However, if these 10 blocks are

broken and placed into ten different HDDs, then the retrieval

of R will require ten parallel positioning operations, where

the maximum of these ten positioning times will determine the

actual positioning time of R. Since we do not have any control

over the initial location of the read/write heads, the second case

has a higher probability to produce a larger positioning time in

this example. In addition to the positioning time, transfer time

is another factor affecting the response time of a disk request.

Positioning time is generally assumed to be the dominant

factor in response time if the block size is small such as 512 B

to 4 KB as commonly used in local file systems. However,

transfer time can be the dominant factor for larger block sizes.

For instance, the block size in distributed file systems can be

256 MB, requiring around 20 seconds to transfer 10 sequential

blocks from a single HDD with 1 Gb/s of transfer rate.

Considering the sequentiality of the correlated blocks in

individual disks and the total size of these sequential blocks,

the proposed framework can be optimized even further for

HDD-based parallel disks by grouping the sequential blocks

from the same HDD and reorganizing these groups together

for better concurrency without breaking their sequentiality. For

this purpose, before generating the graph structure shown in

Figure 5(a), the placement planning module needs to group

the sequential blocks located in the same disk and create a

single vertex in the graph for each group. The resulting graph

will be a hybrid graph including single block vertices not

having any sequential correlations with other blocks and group

vertices representing sequentially correlated blocks. Edges of

a group vertex and its edge weights will continue to represent

the correlations of the particular group with other single or

group vertices and their correlation strength, respectively, and

all these information can be calculated easily by considering

the group memberships. In addition, a maximum group size in

bytes should be set based on the transfer rate of the disks so

that groups larger than this size should not be allowed since

larger group size will work against the concurrency. This way,

grouping in large block sizes will also be eliminated.

V. EVALUATION

In this section, we share our performance evaluation and

cost analysis using real application workloads.

A. Experimental Setup

Our simulations were run in DiskSim 4.0 [24] using the

SSD patch from Microsoft Research [25]. DiskSim is a widely

used storage system simulator available from Carnegie Mellon

Parallel Data Lab. It is able to simulate small to medium sized

storage systems of up to an array of 100 HDDs. Microsoft

Research’s SSD patch is designed as an extension of DiskSim

and it is able to simulate up to an array of 14 SSDs.

We ran experiments on both HDD-based storage ar-

rays (HSA) and SSD-based all-flash arrays (AFA). In both

cases, we used the maximum number of disks supported by

the simulator, 100 for HSAs and 14 for AFAs. Our HDDs are

modeled after the Seagate Cheetah 15K ST3146855FC, which

is a validated disk model by Disksim. Our SSDs are modeled

after Samsung’s K9XXG08UXM as done by the SSD patch.

In both HSAs and AFAs, we set the block/page size to 512B

to match the block size of our workloads. As our performance

metric, we use read and write I/O latency (response time)

values reported by DiskSim.

137

1) Frequent Itemset Miner: In our data analysis module,

we used the Borgelt implementation of the Eclat miner [18]

for finding correlations between blocks. This implementation

is efficient, highly customizable, and easy to adapt for our

framework. It accepts a support parameter, and also allows

mining only the correlated pairs by setting the minimum and

maximum number of items both to two.

2) Initial Data Placement: Our workloads are from var-

ious HDD-based storage systems with a 512 B block size.

Using 512 B blocks/page size for HDDs/SSDs, we initially

distribute the blocks/pages over disks using a set of Zipf-

like distributions [26]. Zipf-like distributions allow us to

control the skew of the parallel access pattern, and observe

the behavior of our framework under various skews. Based

on these Zipf-like distributions, the relative probability of

accessing a block on the i-th most popular disk is propor-

tional to 1/iα for 0 ≤ α ≤ 1. Various natural data access

patterns such as web servers and general purpose key-value

stores have been shown to be skewed in a manner that

can be approximated by a Zipf-like distribution using higher

values of α [5, 26]. Zipf-like distributions are commonly

used for controlled performance evaluation in storage system

research [27, 28]. We tested the performance of our framework

for α = {0.0,0.2,0.4,0.6,0.8,1.0}. For α = 0.0, the disks are

accessed evenly, and for α = 1.0, the distribution follows a

true Zipf distribution (rather than Zipf-like) where the parallel

access pattern is skewed towards the most popular disk.

3) Workloads: We evaluate our framework using five pub-

licly available [29] real-world storage workloads provided by

Microsoft [8]. These traces include block level I/O requests of

various enterprise and production servers running in Microsoft,

including a web server, a version control server, a research

projects server, and a hardware monitoring server. These traces

are widely used in literature [15, 16], and include a mix of

applications with various I/O behaviors as shown in Table I.

TABLE I: Trace Statistics

Trace Application R/W % Avg. R/W Size (KB)

hm Hardware Monitor 45.14 / 54.86 9.0 / 7.0

rsrch Research Projects 9.43 / 90.57 7.5 / 8.7

src2 Version Control 11.02 / 88.98 6.0 / 6.5

stg Staging Server 12.06 / 87.94 9.6 / 8.5

wdev Test Web Server 17.56 / 82.44 12.2 / 8.1

4) Evaluation Methodology: Different workloads include

different numbers of requests, affecting a fair comparison of

results based on the length of the history observed. In order

to have consistency between workloads, we consider the first

100,000 requests of each workload. Next, we split each trace

into a training set and a testing set. The training set is the

first 50% of the requests, and the testing set is the remaining

50%. After splitting the traces, only the training set is used

by our framework for detecting the patterns and determining

the reorganization plan, and only the testing set is used to

evaluate the performance of our reorganization framework.

This separation is crucial for realistic evaluation since no

improvement will be achieved if the detected patterns based

on the history are not re-observed in the future.

B. Experimental Results

We first share the I/O performance evaluation for AFAs and

HSAs, including the effect of additional HDD optimizations

described in Section IV-E. Next, we analyze the cost of

the proposed framework in terms of the data movement and

explain how this cost can be reduced by demonstrating the

trade-off between the data movement and the I/O performance.

1) SSD-based All-Flash Arrays (AFA): Figures 7, 8, 9, 10,

and 11 show the disk I/O latency (response time) performance

of our self-optimizing dynamic framework compared to the

static (no reorganization) placement for AFAs. Each figure

corresponds to a separate workload, where the left sub-figure

shows the read performance and the right sub-figure shows

the write performance. In each graph, the x-axis shows the α

of the Zipf-like distribution, and the y-axis shows the mean

response time over all requests. α = 0.0 represents a parallel

access pattern that is close to optimal and the parallel access

pattern becomes more skewed as α increases.

Disk I/O latency of the static placement consistently in-

creases as the parallel access pattern becomes more skewed.

However, for many workloads, our dynamic self-optimization

framework can keep the I/O latency as stable as possible

without being affected by the skew in the parallel access

patterns of the workloads. This can be clearly observed from

the read performance of src2, stg, and wdev traces presented

in Figures 9(a), 10(a), and 11(a), respectively, and the write

performance of rsrch and src2 traces shown in Figures 8(b)

and 9(b), respectively. Considering all workloads and all α

values, our framework achieves 111% Read, 52% Write, and

53% overall (R+W) performance improvement over the static

placement on average.

Although I/O performance of some workloads improves

equally for for both read and write requests (hm, src2), some

traces achieve a better read performance improvement (stg,

wdev), and some traces achieve a better write performance

improvement (rsrch). There may be a few factors causing this

behavior: (i) The I/O characteristics of the workload (Read

or Write intensive), (ii) The number of block correlations

discovered from the specific request type (Read/Write), and

(iii) The recurrence rate of the discovered correlations in future

accesses. For instance, rsrch is a write intensive workload

where 90% of the I/O requests are writes (see Table I). In

addition, the limited number of correlations discovered from

read requests are not re-accessed in the future. Therefore,

although 89% of write performance improvement is achieved

on average for all α values, no considerable read perfor-

mance improvement is observed. For applications having such

behavior, the proposed framework can be configured such

that only certain request types (only Reads or only Writes)

are monitored and block correlations among this particular

request type are analyzed and optimized.

2) HDD-based Storage Arrays (HSA): In Figures 12, 13,

14, 15, and 16, we present the disk I/O latency performance

of our framework for HSAs. In addition to the static and

dynamic results as reported for the AFA case, here we also

share the effect of our additional HDD optimizations proposed

138

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

hm AFA read

static
dynamic

(a) Read Performance

 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

hm AFA write

static
dynamic

(b) Write Performance

Fig. 7: I/O Latency Performance - hm Trace - AFA

 0.2
 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

rsrch AFA read

static
dynamic

(a) Read Performance

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

rsrch AFA write

static
dynamic

(b) Write Performance

Fig. 8: I/O Latency Performance - rsrch Trace - AFA

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

src2 AFA read

static
dynamic

(a) Read Performance

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

src2 AFA write

static
dynamic

(b) Write Performance

Fig. 9: I/O Latency Performance - src2 Trace - AFA

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

stg AFA read

static
dynamic

(a) Read Performance

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

stg AFA write

static
dynamic

(b) Write Performance

Fig. 10: I/O Latency Performance - stg Trace - AFA

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

wdev AFA read

static
dynamic

(a) Read Performance

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

wdev AFA write

static
dynamic

(b) Write Performance

Fig. 11: I/O Latency Performance - wdev Trace - AFA

in Section IV-E, denoted by dynamic+hdd opt. The results are

similar to the AFA case; except, the damage of not performing

dynamic reorganization is more severe for HSAs since HDDs

are substantially slower devices compared to SSDs, especially

in their read performance. As it can be observed from the fig-

ures, response time for the static placement generally increases

exponentially as the access pattern gets skewed. However,

similar to the AFA case, our framework keeps the response

time and I/O performance of the storage system as stable as

 0

 500

 1000

 1500

 2000

 2500

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

hm HSA read

static
dynamic
dynamic+hdd opt.

(a) Read Performance

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

hm HSA write

static
dynamic
dynamic+hdd opt.

(b) Write Performance

Fig. 12: I/O Latency Performance - hm Trace - HSA

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

rsrch HSA read

static
dynamic
dynamic+hdd opt.

(a) Read Performance

 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

rsrch HSA write

static
dynamic
dynamic+hdd opt.

(b) Write Performance

Fig. 13: I/O Latency Performance - rsrch Trace - HSA

 0

 200

 400

 600

 800

 1000

 1200

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

src2 HSA read

static
dynamic
dynamic+hdd opt.

(a) Read Performance

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

src2 HSA write

static
dynamic
dynamic+hdd opt.

(b) Write Performance

Fig. 14: I/O Latency Performance - src2 Trace - HSA

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

stg HSA read

static
dynamic
dynamic+hdd opt.

(a) Read Performance

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

stg HSA write

static
dynamic
dynamic+hdd opt.

(b) Write Performance

Fig. 15: I/O Latency Performance - stg Trace - HSA

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

wdev HSA read

static
dynamic
dynamic+hdd opt.

(a) Read Performance

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.2 0.4 0.6 0.8 1

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Zipf-like skew (α)

wdev HSA write

static
dynamic
dynamic+hdd opt.

(b) Write Performance

Fig. 16: I/O Latency Performance - wdev Trace - HSA

possible, especially for the read requests of the src2, stg,

and wdev, and the write requests of the hm, rsrch, and src2.

Considering all workloads and all α values, our framework

including the additional HDD optimizations achieves 366%

Read, 82% Write, and 170% overall (R+W) performance

improvement over the static placement on average.

Performing additional HDD optimizations is especially cru-

cial for workloads having frequent sequential access patterns

in their individual HDDs. When we reorganize the sequen-

139

TABLE II: Cost vs. Overall(R+W) Performance - AFA

Trace
Support = 1 Support = 5 Support = 10

Cost(MB) Per.(%) Cost(MB) Per.(%) Cost(MB) Per.(%)

hm 102.63 30.46 5.70 9.86 0.95 5.66

rsrch 76.19 89.26 4.09 41.90 0.76 32.89

src2 63.03 97.14 3.37 66.23 1.46 60.07

stg 83.40 31.97 5.94 13.57 2.22 10.64

wdev 82.09 16.97 9.39 9.40 1.23 6.28

AVG 81.5 53.2 5.7 28.2 1.3 23.1

tial blocks of individual disks together as described in Sec-

tion IV-E, we achieve an additional 216% Read, 24% Write,

and 86% overall (R+W) performance improvement over the

static placement averaged over all workloads and α values. The

workloads that are most benefited from the additional HDD

optimizations are hm, stg, and wdev due to their sequential

read access patterns. As discussed in Section IV-E, performing

reorganization without considering the internal disk geometry

of HDDs can actually damage the I/O performance of certain

workloads. We can clearly observe this issue in Figures 12(a),

15(a), and 16(a) for the hm-read, stg-read, and wdev-read

workloads, respectively, for lower values of α.

3) Cost Analysis: In this section, we analyze the cost

of the proposed framework and demonstrate how this cost

can be controlled easily using the support value of FIM.

As mentioned in Section IV-B1, FIM algorithms accept a

minimum frequency value called support to ignore correlations

occurring less than this value. By increasing the support value,

it is possible to decrease the number of correlations to be

passed to the placement planning, and reorganization modules

considerably. The reduced number of correlations will cause

faster reorganization times. On the other hand, reducing the

number of correlations is also expected to cause a reduced

I/O performance as a side effect.

In Tables II and III, we illustrate the trade-off between

the reorganization cost (blocks moved in MB) and the I/O

performance improvement (in %) using various support values

for AFAs and HSAs, respectively. The provided values are

averages for all α. For the previously discussed experimental

results using support = 1, our framework moves 81.5 MB of

data for AFAs and 97.5 MB of data for HSAs on average,

and gains an average of 53.2% and 170.5% performance

improvement, respectively. Such and improvement with less

than 100 MB of data movement was possible due to frequent

re-access of the same data and low inter-arrival time between

requests. On average, the testing traces request 386 MB of

data, where only 138 MB of this data is unique. In addition,

77.8% of the requests have inter-arrival times of less than

100 microseconds creating a bursty I/O pattern and convoy

effect. Nevertheless, data movement cost can be decreased

even further by increasing the support value and slightly losing

from the performance. For AFAs shown in Table II, increasing

the support from 1 to 5 reduces the cost an average of

15.6x with 2.2x loss in performance. Moreover, increasing the

support from 1 to 10 reduces the cost an average of 71.2x while

decreasing the performance improvement 3.1x considering all

workloads. Table III presents a similar trade-off for HSAs;

TABLE III: Cost vs. Overall(R+W) Performance - HSA

Trace
Support = 1 Support = 5 Support = 10

Cost(MB) Per.(%) Cost(MB) Per.(%) Cost(MB) Per.(%)

hm 109.94 258.19 8.03 103.68 1.09 14.38

rsrch 89.50 87.02 4.98 40.78 0.84 32.63

src2 78.96 172.58 4.05 121.01 1.70 37.09

stg 107.31 78.20 7.61 9.35 2.61 5.29

wdev 101.68 256.54 13.19 194.92 1.36 28.56

AVG 97.5 170.5 7.6 94 1.5 23.6

where increasing the support from 1 to 10 reduces the cost an

average of 74x while causing only 9.8x performance loss.

VI. DISCUSSION

The proposed framework can directly be applied to various

parallel storage scenarios including key-value stores, paral-

lel/distributed file systems, and internal parallelism of SSDs.

In this section, we provide our insights for further applicability

of our framework to heterogeneous storage systems and repli-

cated datasets. In addition, we also provide further discussions

on reorganization cost and frequency.

A. Heterogeneous Storage Architectures

In addition to the availability of homogeneous HSAs and

AFAs, hybrid storage arrays composed of SSDs and HDDs

have also emerged recently. In hybrid arrays, reorganization

should also consider the individual device characteristics while

boosting the parallelism. An important characteristic of SDDs

is that they provide a significantly faster read performance

compared to HDDs. Considering this, our placement plan-

ning heuristic can be adjusted so that correlated blocks are

distributed considering their correlation frequencies stored on

the graph edges. Since these frequency values indicate the

popularity of the correlations, popular blocks having high

correlation frequency can be reorganized to faster SSDs since

these blocks are expected to be retrieved more frequently.

Another important characteristic of SSDs is that they pro-

vide faster reads than writes and additional writes negatively

affect the endurance of SSDs. Considering these characteris-

tics, authors in [15] associated event types (Read/Write) with

blocks and proposed reorganization for directing read-heavy

blocks to SSDs and write-heavy blocks to HDDs as discussed

in the related work. This idea can be adapted to our framework

such that correlations of read-heavy blocks and write-heavy

blocks can be planned separately in two different correlation

graphs. Then, read-heavy block reorganizations can be per-

formed over SSDs while write-heavy block reorganizations can

be performed over HDDs. This way, parallel I/O is boosted

while considering individual device characteristics.

B. Replicated Datasets

Replication is a common technique used in distributed file

systems to improve performance, reliability, and availabil-

ity [30]. In replicated systems, replica selection plays an im-

portant role in I/O performance such that skewed disk accesses

can be alleviated by selecting the replicas efficiently [31–34].

However, some existing systems use replication mainly for

fault tolerance and utilize a predetermined (primary) replica

for servicing I/O request, as in MongoDB [35]. In such cases,

140

reorganization can be performed among these replicas only. On

some other systems, replicas are ordered by their distance from

the reader and the closest replica to the reader is selected [30],

in which case block reorganizations can be performed zone

by zone, among the replicas of the correlated blocks that

are physically close to each other. All these cases can be

handled in our placement planning module by making slight

modifications in the graph construction and coloring stages.

C. Reorganization Cost and Frequency

Although slightly increasing the support value reduces the

reorganization cost considerably as shown in Tables II and

III, reorganization rate limitation techniques can also be in-

corporated to keep layout optimization from overwhelming

regular application I/O by limiting the number of active block

movement operations both for the entire storage system and for

each disk. Similar techniques are shown to be effective in large

scale storage systems, such as the rate-limited re-replication

technique implemented in the Google File System [30]. In

addition, the effect of additional writes on the endurance

of SSDs installed in AFAs can be considered as another

cost of reorganization. Although endurance damage can be

reduced considerably by using high support values, internally

SSDs also perform optimizations for wear leveling and a

commonly applied AFA design choice is to lean on the internal

capabilities of SSDs and perform reorganization across SSDs

through the storage array controller. Therefore, internal wear

leveling algorithms used in SSDs are expected to distribute

these additional writes evenly to their flash cells.

An important system decision to be made is how often to

trigger reorganization. Although reorganization can be trig-

gered in fixed intervals, especially in idle or low activity times,

nonetheless such static reorganization would be against the

nature of dynamic self-optimization. Instead, reorganization

should be automatically triggered based on the disk I/O

performance of the storage system, when the I/O performance

drops below a predefined threshold. Disk I/O latency based

service-level agreements (SLA) are commonly used in cloud

computing since many real-time applications running in the

cloud as well as enterprise data centers have strict response

time requirements [1]. Based on SLA requirements or QoS

guarantees provided, such thresholds can easily be determined

and self-optimization can be triggered automatically if disk I/O

performance drops below this threshold.

VII. CONCLUSION

In this paper, first we show evidence that block correlations

exist in storage workloads, and then introduce a framework to

detect the correlated blocks and reorganize them to improve

I/O parallelism. Our analysis shows that the proposed self-

optimization framework is highly successful in adjusting to

skewed disk access patterns by keeping the I/O response

time fairly stable. This property would be especially valuable

to meet service-level agreements in cloud computing, where

various applications with different disk access patterns can

utilize the same storage system. The proposed framework is

generic and can be applied to various parallel storage systems.

REFERENCES

[1] N. Altiparmak et al., “Replication based qos framework for flash arrays,”
in CLUSTER ’12, Beijing, China, September 2012.

[2] D. A. Patterson et al., “A case for redundant arrays of inexpensive disks
(raid),” in SIGMOD ’88, 1988, pp. 109–116.

[3] N. Altiparmak et al., “Equivalent disk allocations,” IEEE Transactions

on Parallel and Distributed Systems, vol. 23, no. 3, 2012.
[4] M. J. Atallah et al., “(Almost) optimal parallel block access for range

queries,” in Proc. ACM PODS, Dallas, Texas, May 2000, pp. 205–215.
[5] B. Atikoglu et al., “Workload analysis of a large-scale key-value store,”

SIGMETRICS Perform. Eval. Rev., vol. 40, no. 1, pp. 53–64, Jun. 2012.
[6] A. Miranda et al., “Analyzing long-term access locality to find ways to

improve distributed storage systems,” in PDP ’12, 2012, pp. 544–553.
[7] Z. Li et al., “C-miner: Mining block correlations in storage systems,”

in FAST ’04, Berkeley, CA, USA, 2004, pp. 173–186.
[8] D. Narayanan et al., “Write off-loading: Practical power management

for enterprise storage,” Trans. Storage, vol. 4, no. 3, Nov. 2008.
[9] J. C. Corbett et al., “Spanner: Google’s globally-distributed database,”

in OSDI’12, Berkeley, CA, USA, 2012, pp. 251–264.
[10] M. Bhadkamkar et al., “Borg: Block-reorganization for self-optimizing

storage systems,” in FAST ’09, Berkeley, CA, USA, 2009, pp. 183–196.
[11] W. W. Hsu et al., “The automatic improvement of locality in storage

systems,” ACM Trans. Comput. Syst., vol. 23, no. 4, Nov. 2005.
[12] H. Huang et al., “Fs2: Dynamic data replication in free disk space for

improving disk performance and energy consumption,” in SOSP ’05.
New York, NY, USA: ACM, 2005, pp. 263–276.

[13] G. Weikum et al., “Dynamic file allocation in disk arrays,” in SIGMOD

’91. ACM, 1991, pp. 406–415.
[14] R. Arnan et al., “Dynamic data reallocation in disk arrays,” Trans.

Storage, vol. 3, no. 1, Mar. 2007.
[15] T. Xie et al., “Dynamic data reallocation in hybrid disk arrays,” IEEE

Trans. on Parallel and Distributed Systems, vol. 21, no. 9, Sept 2010.
[16] A. Miranda et al., “Craid: Online raid upgrades using dynamic hot data

reorganization,” in FAST ’14, Santa Clara, CA, 2014, pp. 133–146.
[17] J. Axboe, blktrace User Guide, Feb 2007, available: http://www.cse.

unsw.edu.au/∼aaronc/iosched/doc/blktrace.html.
[18] C. Borgelt, “Frequent item set mining,” WIREs Data Mining Knowl.

Discov., vol. 2, p. 437456, Nov. 2012.
[19] T. Jensen et al., Graph coloring problems. John Wiley & Sons, 2011.
[20] S. Fitzpatrick et al., “An experimental assessment of a stochastic,

anytime, decentralized, soft colourer for sparse graphs,” in Stochastic

Algorithms: Foundations and Applications, 2001, vol. 2264, pp. 49–64.
[21] A. Khanafer et al., “The min-conflict packing problem,” Computers &

Operations Research, vol. 39, no. 9, pp. 2122 – 2132, 2012.
[22] L. R. Ford et al., Flows in Networks. Princeton University Press, 1962.
[23] A. V. Goldberg et al., “Minimum Cost Flows in Graphs with Unit

Capacities,” in STACS ’15, 2015, pp. 406–419.
[24] J. S. Bucy et al., “The disksim simulation environment version 4.0,”

Carnegie Mellon University Parallel Data Lab, Tech. Rep., May 2008.
[25] N. Agrawal et al., “Design tradeoffs for ssd performance,” in ATC’08:

Usenix Annual Technical Conference, Berkeley, CA, USA, 2008.
[26] L. Breslau et al., “Web caching and zipf-like distributions: evidence and

implications,” in INFOCOM ’99, vol. 1, Mar 1999, pp. 126–134.
[27] Y. Zhang et al., “Warming up storage-level caches with bonfire,” in

”FAST ’13”, San Jose, California, ”February” ”2013”.
[28] J. C. Chou et al., “Exploiting replication for energy-aware scheduling

in disk storage systems,” IEEE TPDS, vol. 26, no. 10, 2015.
[29] SNIA IOTTA Trace Repository, Storage Networking Industry Associa-

tion, http://iotta.snia.org.
[30] S. Ghemawat et al., “The google file system,” in SOSP ’03, pp. 29–43.
[31] N. Altiparmak et al., “Integrated maximum flow algorithm for optimal

response time retrieval of replicated data,” in 41st International Confer-

ence on Parallel Processing (ICPP 2012), Pittsburgh, Sep 2012.
[32] N. Altiparmak et al., “Generalized optimal response time retrieval of

replicated data from storage arrays,” ACM Transactions on Storage,
vol. 9, no. 2, pp. 5:1–5:36, Jul. 2013.

[33] N. Altiparmak et al., “Continuous retrieval of replicated data from het-
erogeneous storage arrays,” in MASCOTS ’14, Paris, France, September
2014.

[34] N. Altiparmak et al., “Multithreaded maximum flow based optimal
replica selection algorithm for heterogeneous storage architectures,”
IEEE Transactions on Computers, vol. 65, no. 5, May 2016.

[35] K. Chodorow et al., MongoDB: The Definitive Guide, 1st ed. O’Reilly
Media, Inc., 2010.

141

