
Replication Based QoS Framework for Flash Arrays

Nihat Altiparmak and Ali Şaman Tosun
Department of Computer Science

University of Texas at San Antonio
San Antonio, TX 78249

{naltipar,tosun}@cs.utsa.edu

Abstract—The increasing popularity of the storage cloud is leading
organizations to move their applications and enterprise data into the
cloud. It is desirable to move time-critical applications demanding high
performance I/O operations. Flash based storage arrays have emerged
to address the high performance I/O requirements; however, providing
predictable Quality of Service (QoS) for applications with real time
data requirements is a challenging open problem. This paper introduces
a QoS framework for flash based storage arrays. Our framework
provides deterministic and statistical response time guarantees through a
combination of techniques including replication, data mining, and online
retrieval. We evaluated the framework using synthetic and real-world
traces. The QoS performance of the system is compared to the existing
high-throughput RAID designs. Numerical results show that under the
synthetic traces, QoS performance of the proposed system outperforms
the existing high performance RAID designs. Real world traces indicate
that the proposed QoS mechanism is tunable to support the guarantees
required by various real world applications.

Keywords-storage qos; replication; parallel i/o; design theory

I. INTRODUCTION

With the emergence of storage cloud, companies now
provide storage based services for a wide range of applica-
tions [1], [4]. Customers can store their data on the cloud
with certain reliability and access requirements without buying
the storage devices and dealing with the operating cost. Since
the organizations are challenged to respond to the changes
in a most cost-effective way possible, interest in moving
the applications and enterprise data centers to the cloud is
expected to increase [23]. Real-time applications running on
the cloud and enterprise data centers generally have strict re-
sponse time requirements. Some of these applications include
multimedia streaming with cloud players, business critical
applications such as online transaction and query processing,
virtual reality, scientific applications with real time storage
requirements, and video/game on demand. We believe that
these high performance real-time applications running on the
cloud or on the enterprise data centers would benefit a lot from
a QoS mechanism that can provide deterministic or statistical
response time guarantees.

Quality of service (QoS) is a mechanism that is proposed
to offer performance guarantees by controlling the distribution
of resources. Providing QoS for storage systems is crucial
in order to offer some performance guarantees for the data
access. The importance of QoS for distributed network storage
service is first emphasized by Chuang et al. [17]. They clearly
state the superiority of replication over caching to provide
QoS guarantees for storage systems. Wei et al. [34] propose
a QoS mechanism for distributed real-time databases using
replication. They divide data objects into two types, temporal
and non-temporal data; and they fully replicate the temporal

data in their system. However, the details of the replication
scheme such as how the replicas are distributed over the
devices, how many replicas should be chosen, and how the
retrieval should be performed are not investigated. Hence, we
believe that additional studies of providing QoS for storage
systems are necessary in order to address these issues.

In this paper, we propose a replication based QoS mech-
anism for flash based storage arrays. Our QoS mechanism
provides deterministic and statistical response time guarantees
for data access using simple admission control mechanisms.
We evaluate the performance of the proposed framework
using DiskSim [16] with synthetic and real world application
traces. Numerical results show that under the synthetic traces,
QoS performance of our framework outperforms the existing
high performance RAID solutions. Real world traces indicate
that the proposed QoS framework is tunable to support the
guarantees desired by the real world applications by applying
data mining techniques, online retrieval of the replicas and
adjusting the copy/device amount.

The rest of the paper is organized as follows: In section II,
we present the motivation behind this work with the necessary
background information. Section III describes the proposed
deterministic and statistical QoS frameworks. We adapt the
framework to the real world applications in section IV and the
performance of the system is evaluated in section V. Finally,
we conclude with section VI.

II. MOTIVATION AND BACKGROUND

In this section, we first provide background information
on flash arrays. We explain why flash arrays are a better
choice for high performance storage systems and providing
QoS. Next, we describe declustering, the role of replication
in providing QoS, and the important aspects of choosing a
suitable replicated declustering scheme for QoS.

A. Flash Arrays
Flash based storage devices are rapidly gaining mar-

ket share. Flash technology offers non-volatile storage, fast
random-access and low power consumption making them
ideal. Flashes are already deployed in smart phones, digital
cameras and MP3 players. Packing the flash memory in hard
disk drive (HDD) form resulted the solid-state drive (SSD)
and SSDs have received a lot of attention by the research
community recently. Recent improvements in flash density led
academia and industry to consider storage arrays entirely based
on flash technology. Figure 1 shows a simplified block diagram
of a general flash array. Flash array is composed of multiple

2012 IEEE International Conference on Cluster Computing

978-0-7695-4807-4/12 $26.00 © 2012 IEEE

DOI 10.1109/CLUSTER.2012.53

182

flash modules connected to a controller enabling parallel
retrieval and reliability. Each flash module is composed of
multiple flash packages having its own flash module controller
(FMC), DRAM and error-correcting code (ECC) mechanism.
Some research has already been performed to enhance the
reliability and performance of flash arrays [26], [27]. Several
products have been launched [5], [6], [7], [9], [10] composed
of hundreds of parallel flash modules, offering terabytes of
capacity and millions of I/O per second (IOPS).

FMC

DRAM DRAM DRAM

...

...

...

DRAM

DRAM

Module
Flash

Module
Flash

Module
Flash Flash

Module

DRAM DRAMDRAM

Flash
Module

FMCFMC

Flash
Module

FMCFMC

FMC

Flash
Module

FMC

Module
Flash

FMC

C
O

N
T

R
O

L
L

E
R

Fig. 1. General structure of a flash array

Although HDD based storage arrays are traditionally used
for high performance applications, performance of HDD was
limited by 15K revolutions per minute (RPM) disks over
years. By reducing the power consumption and increasing the
overall throughput, flash based storage arrays have potential
to address the challenges faced by storage cloud providers and
enterprise data centers for the applications requiring high per-
formance I/O operations. Different than the traditional HDD
based storage arrays, flash arrays do not have variable delays
caused by mechanical process of accessing disk data such as
rotational delay, seek time, head/cylinder switch time and spin-
up time. Because of these unpredictable delays, proposing
a QoS framework for traditional HDD based storage arrays
cannot exceed providing a best effort performance rather than
giving response time guarantees. The reasons mentioned above
motivate the usage of flash based storage arrays for providing
QoS on storage systems.

B. Replicated Declustering for QoS
Multi-device architectures offer the opportunity to exploit

I/O parallelism during retrieval. The most crucial part of
exploiting I/O parallelism is to develop storage techniques
that access the data in parallel. A common approach for
efficient parallel I/O is partitioning the data space into disjoint
regions (buckets) and allocating the data to multiple devices.
This process is called declustering. When users issue a query,
data falling into disjoint partitions is retrieved in parallel from
multiple devices. Optimally, in a system with N devices,
retrieving b buckets requires � b

N
� parallel accesses to the

storage device.
Providing QoS guarantees on storage arrays is difficult for

many reasons. First, if no assumptions are made about the
placement of data on the storage array, in the worst case
all the I/O requests can end up being on the same device
and require serial retrieval. Second, requirements for I/O
requests are dynamic and not easy to predict. Third, providing
guarantees in a system with multiple devices and multiple
users is challenging. Choosing a suitable declustering scheme

for QoS that allows replication of buckets plays an important
role to cope with these challenges.
1) Role of Replication: Replication plays a vital role in

providing QoS. When replication is used, each bucket is
stored on multiple devices and we can choose one of the
devices for the retrieval of the bucket. Let k be the number of
buckets that can be retrieved from a single device in period
T . Using a single copy, the only guarantee we can provide
is that any k buckets can be retrieved in time T since all
the buckets can be in the same device. Using replication
we can increase this number significantly without making
any restricting assumptions since we can choose an alternate
device for buckets that are on the same device. When c copy
replication is used, each bucket is replicated over c devices.
2) Replicated Declustering Schemes: Many replicated

declustering schemes were proposed in the literature rang-
ing from random schemes to the schemes based on com-
binatorial designs. Major schemes include random duplicate
allocation (RDA) [29], partitioned allocation [19], dependent
periodic allocation [33], orthogonal allocation [20], [30],
and design-theoretic allocation [31]. A replicated declustering
scheme should have three important features for it to be
suitable for storage QoS. First one is the worst case retrieval
cost to retrieve b buckets using replication. The scheme should
be able to provide deterministic low retrieval cost guarantees.
Secondly, the guarantees provided by the scheme should not
depend on a specific query type, it should be valid for all type
of queries. Lastly, the scheme should have an efficient retrieval
algorithm to decide the replica to be used for retrieval of a
bucket.

RDA stores a bucket on devices chosen randomly from the
set of devices. The retrieval cost of RDA is found to be at
most one more than the optimal with high probability [29];
however, the scheme cannot provide any guarantees since it is
based on a random selection. In partitioned replication, the
set of devices are divided into groups and devices in one
group are replicated on other devices in the same group. Al-
though the partitioned allocation performs reasonable for range
queries, it performs poorly for arbitrary and connected queries.
Dependent periodic allocation allocates a shifted version of
the first copy as the second copy. It performs well for the
queries including buckets near to each other such as range
and connected queries; however, the performance degrades
for arbitrary queries. Orthogonal allocations ensure that when
the devices that a bucket is stored at are considered as a
pair, each pair appears only once in the allocation. It can
guarantee a retrieval cost of at most �√b� for an arbitrary
query containing b buckets. Design-theoretic allocation assigns
buckets to devices using the blocks of a combinatorial design.
An (N, c, 1) design for c copy replicated declustering using
N devices guarantees that (c − 1)M2 + cM buckets can be
retrieved using at most M accesses. The last parameter ensures
that each device pair appears only once in the allocation.
3) Replicated Declustering Scheme Chosen: Although both

orthogonal and design-theoretic allocations can provide de-
terministic response time guarantees without depending on

183

the query type, our choice for replication strategy is design-
theoretic allocation for the following reasons. First of all, the
guarantees given by the design-theoretic allocation is better
than the orthogonal allocation. For c = 2, design theoretic
allocation can retrieve (2 − 1)12 + 2 ∗ 1 = 3 buckets in
M = 1 access, 8 buckets in 2 accesses, and 15 buckets in
3 accesses; however, orthogonal allocation requires �√3� = 2
accesses for 3 buckets, 3 accesses for 8 buckets, and 4 accesses
for 15 buckets. Secondly, finding an orthogonal allocation
for higher dimensions of data are challenging and it only
supports regular grid structures. On the other hand, depending
on the response time requirement of the application, a suitable
design providing the requested guarantees can be chosen easily
by changing the copy and the device count of the design-
theoretic allocation. More information about combinatorial
block designs can be found in [18]. Finally, design-theoretic
allocation provides an efficient retrieval algorithm. Readers are
directed to [32] for an in depth comparison of these replicated
declustering schemes and their retrieval strategies.
4) Example of Design-theoretic Allocation: (9,3,1) design

of design-theoretic allocation is given in Figure 2. Each col-
umn in the figure is a design block. The notation (9,3,1) means
we have 9 numbers (0 to 8), each design block has 3 elements
and every pair appears together in only 1 design block. 0
and 1 appear together only in the first block. Two different
design blocks can have at most one element in common. The
numbers in a design block are used to determine the devices
a bucket should be stored at. For example, first design block
has (0, 1, 2). This means 3 copies of a specific bucket can be
stored at devices 0, 1, and 2. Rotations of the design blocks can
also be used to assign buckets to devices in order to support
more buckets. Rotation of the design block (0, 1, 2) produces
the design blocks (1, 2, 0) and (2, 0, 1). (9,3,1) design supports
N∗(N−1)

c−1 = 9∗8
2 = 36 buckets with rotations.

0 0 0 1 1 1 2 2 2 3 6

1 3 4 5 3 4 5 3 4 5 4 7

2 6 8 7 8 7 6 7 6 8 5 8

0

block Fig. 2. (9,3,1) design

III. QOS FRAMEWORK

In this section, we discuss the proposed QoS framework
in detail. We assume that the storage array has N flash
modules (devices) and we divide the time into T sized
intervals. Applications issue block requests to the system at
the beginning of each interval and the goal is to complete
the retrieval of requests before the end of the interval. Next
interval starts with a new set of requests. Our goal is to provide
deterministic or statistical guarantees to the applications. We
use replication to provide the guarantees. In the proposed
scheme, applications specify block requests and the admission
control algorithm either accepts or rejects/delays some of the
request depending on whether it can provide the guarantee.
This approach provides deterministic guarantees. By using
the properties of the allocation scheme in use, statistical
guarantees can also be provided. For statistical QoS, we can

guarantee that the probability that the set of requests cannot
be retrieved in an interval is less than some threshold ε.

A. Deterministic QoS
Using design-theoretic allocation, (c− 1)M2+ cM buckets

can be retrieved using M accesses when c copies of the data
is used. In (9,3,1) design, there are 9 devices and 3 copies.
We set the value of M to 1. Using the proposed system we
can retrieve (3 − 1) ∗ 12 + 3 ∗ 1 = 5 requests in 1 access.
Assume that there are 3 applications in the system and they
request data blocks as shown in Table I. Application 1 joins at
time T0 and has a request size of 2 block requests per period.
Application 2 has a request size of 2 block requests per period
and requests admission at time T1. Since the total request size
includes only Application 1, Application 2 is admitted and total
request size is set to 4. Application 3 requests admission at
period T2 and has a maximum request size of 1 block request
per period. Since the maximum request size is 5 based on
system parameters and current request size is 4, Application
3 is admitted and total request size is set to 5, which is the
limit. So, no more applications can be admitted until one of
the applications leaves the system. Specific block requests the
applications make is given in Table I. A triple (a, b, c) denotes
the block whose first copy is stored at device a, second copy
is stored at device b, and third copy is stored at device c.

TABLE I
I/O REQUESTS

Period Application 1 Application 2 Application 3

(0, 3, 6)
T0

(5, 7, 0)
(0, 4, 8) (8, 0, 4)

T1
(7, 0, 5)

T2 (1, 2, 0) (6, 0, 3)
(1, 4, 7) (1, 3, 8) (0, 1, 2)

T3
(0, 5, 7)

1) Admission Control: Using design-theoretic allocation,
admission control is quite simple. Any S = (c− 1)M2 + cM

buckets with c copies can be retrieved in an interval T with
M parallel accesses to the storage device. The time T is
determined depending on the storage device in use. Admission
control algorithm checks whether the new request can be
satisfied without exceeding this limit. If the request cannot
be completed within this interval, it can either be rejected or
delayed to the next available interval.

B. Statistical QoS
In order to provide statistical QoS, we use statistical

information about the distribution of data blocks to the
devices based on the properties of the specific design in use.
The goal in statistical QoS is to guarantee that the probability
that the set of requests cannot be retrieved in a desired
interval is less than some threshold ε. In deterministic scheme
we assumed that whenever the number of requests are greater
than S, retrieval cannot be completed within the interval.
However, this is not always true. Let us look at an example.
Consider the setting given in Table I. Using this setting
any 5 block requests can be retrieved in 1 access. However
in some cases even 9 block requests can be retrieved in 1
access. An example is given in Figure 3. 9 block requests

184

{(0, 1, 2), (1, 2, 0), (2, 0, 1), (3, 8, 1), (4, 8, 0), (5, 7, 0), (6, 0, 3),
(7, 0, 5), (8, 1, 3)} are non-conflicting and can be retrieved
in 1 access from the devices shown in the figure. Using
sampling, we can find the optimal retrieval probabilities for
different request sizes and improve the model by incorporating
these probabilities into the admission control system. By this
way, we can accept a greater number of requests than S.

30 1 2 4 5 6 87

(0,1,2) (1,2,0) (2,0,1) (3,8,1) (4,8,0) (5,7,0) (6,0,3) (7,0,5) (8,1,3)

Disks
Fig. 3. Example for full retrieval

1) Sampling: Using the properties of our design, we can
find the optimal retrieval probabilities of different request sizes
by sampling. To find the optimal retrieval probabilities for
each request size k, we need to choose k random blocks out
of available design blocks and check their retrieval optimality.
Repeating this process many times will give us a good estimate
about the optimal retrieval probability for the request size of
k. Figure 4 shows the optimal retrieval probabilities for the
(9,3,1) design. The same design block is allowed to be chosen
multiple times for fair results. As expected, the probability
takes its lowest values for k that is a multiple of N = 9.
Precisely, the probability of being optimal for k = 6 is 0.99,
for k = 7 is 0.98, for k = 8 is 0.95, and for k = 9 is 0.75. In
other words, deterministic QoS rejects the 6th request even if
there is an optimal retrieval 99% of the time. The probability
increases to 1 for k = 10 since the optimal retrieval requires
� b

N
� = � 109 � = 2 accesses for 10 buckets. The probability

converges to 1 as k increases.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 10 20 30 40 50 60 70 80

O
pt

im
al

 R
et

rie
va

l P
ro

ba
bi

lit
y

Request Size (# of blocks)

(9,3,1) Design Optimal Retrieval Probabilities

(9,3,1)

Fig. 4. Optimal retrieval probabilities of (9,3,1) design

2) Admission Control: As in the admission control of the
deterministic case, if the number of requests are not greater
than the limit S, the requests are admitted immediately. If
the number of requests are greater than S, then we use the
probabilities found in the previous section. Let Pk denote the
probability that the request size k is retrieved optimally. Pk has
already been found previously using sampling. Let Nk denote
the number of intervals encountered with the request size of k
and Nt denote the total number of intervals encountered. Nk

and Nt can simply be calculated by keeping k + 1 counters.
Then, Rk = Nk

Nt

will give us the probability of the interval
with the request size of k and (1 − Pk) will give us the
probability that the interval with the request size of k cannot
be retrieved optimally. Let Q denote the probability that the set
of accepted requests cannot be retrieved optimally. Admission
control algorithm admits the requests of the current interval if

Q =
∑

max{k}
i=1 (1−Pk) ∗Rk is smaller than ε. If Q is greater

than or equal to ε, then the requests are rejected or necessary
requests are delayed to the next available interval depending
on the user preferences.
C. Retrieval of Requests

Retrieval uses the retrieval algorithm of design-theoretic
allocation. Retrieval of requests in Table I is illustrated in
Figure 5. Labels on blocks denote the devices they are stored
at and a block is placed over device i if it is to be retrieved
from device i. Each block is initially mapped to the device on
which the first copy of it is stored. If retrieval requires more
than 1 access, remapping is used to map the blocks to other
devices using the second or the third copy. For the periods T0,
T1, and T2; initial mapping requires 1 access and remapping
is unnecessary. For T3 initial mapping requires 2 accesses
and remapping is required. The block (0, 1, 2) is remapped
to device 2 since its third copy is stored on device 2. The
block (1, 3, 8) is remapped to device 3 since its second copy
is stored on device 3.

3O 1 2 4 5 6 87

(0,3,6) (5,7,0)

(0,4,8) (7,0,5) (8,4,0)

(1,2,0) (6,0,3)

(0,5,7) (1,4,7)

(0,1,2) (1,3,8) Overflow}

Disks

T0

T1

T2

T3

Fig. 5. Retrieval of requests in Table I

Although the retrieval algorithm of design-theoretic alloca-
tion guarantees the optimal retrieval for the request sizes not
greater than S, it does not guarantee an optimal retrieval for the
request sizes greater than S, which may happen in statistical
QoS. Finding the optimal retrieval schedule in this case
requires solving maximum flow problem. Readers are directed
to [14], [15] for details of solving maximum flow algorithm
to find the optimal retrieval schedule. For a query size of
b, design-theoretic retrieval requires O(b) time and max-flow
algorithm requires O(|b|3) time. Since the design-theoretic
retrieval is faster than solving the maximum flow problem, our
retrieval algorithm first checks the retrieval optimality using
the design-theoretic retrieval, if the access amount is greater
than the optimal (� b

N
�), we solve the maximum flow problem.

IV. ADAPTATION TO THE REAL WORLD

There are two issues that need to be tackled in order to
support real world applications. First of all, we have limited
number of design blocks in our designs but generally a storage
system has more data blocks (buckets). Therefore, we need
an efficient way of matching these data blocks to the design
blocks so that the data blocks requested within a close time
interval are matched to the different design blocks. This will
minimize the possibility of block requests to be retrieved
serially from the same device. For this assignment, we are
using Frequent Itemset Mining (FIM). The second issue is the
unexpected delays caused by the retrieval. Since the retrieval
algorithm of design-theoretic allocation assumes the blocks to

185

be retrieved at the beginning of every interval, requests coming
within an interval should be processed at the beginning of the
next interval. This requirement introduces an unexpected delay
to the response time of the block requests. In order to eliminate
this retrieval delay, we propose an online retrieval algorithm.
A. Frequent Itemset Mining

FIM aims to find frequently occurring subsets in a sequence
of sets. The original motivation of the problem comes from the
need to analyze supermarket customer behavior such that how
often items are purchased together. Frequency is determined
by a user specified number called support. Generally, found
patterns by FIM are expressed as association rules such as x

number of customers who bought item1 also bought item2
for a set size of two or y number of customers who bought
item1 and item2 together also bought item3 for a set size
of three, where x, y ≥ support. Since its first introduction in
1993 by Argawal et al. [12], there has been many studies and
algorithms proposed for FIM. These algorithms can be cate-
gorized as variants of one of three different base algorithms;
Apriori [13], Eclat [35], and FP-growth [21].

In our case, since we have limited number of design blocks;
i.e. 36 blocks for the (9,3,1) design, we need to match
these design blocks to the data blocks of the storage system
efficiently. Our intuition for this matching is that the data
blocks that are generally requested together (or within a short
time interval) should be matched to the different design blocks
to increase the chance of parallel retrieval. Although this
matching can be done randomly or in a round-robin fashion,
FIM is a better choice since it can find the data blocks that are
frequently requested together. Therefore, we first investigate
the trace of the storage system and determine the data blocks
that are requested within a short time interval T . This interval
can be determined according to the response time of the
storage system in use. Then, we mine this dataset using FIM
for set size of 2. Finally, FIM returns the frequent data block
pairs that are requested together with their support number
showing how many times those data blocks are requested
together. Most FIM algorithms also accept minimum support
number as a parameter, where we can decrease the mining time
by increasing this minimum support. Matching of the design
blocks to the data blocks is done by using the information
returned by the FIM such that the data blocks requested
together are mapped to the different design blocks. The data
blocks that are not returned by FIM (previously requested
alone or new data blocks that are not encountered in the
history) are matched to the design block number returned by
(dataBlockNumber%numberOfDesignBlocks).
B. Online Retrieval

Retrieval algorithm of design-theoretic allocation assumes
that block requests arrive at the beginning of each interval.
In order to apply this algorithm to the real world scenario,
we need to move the block requests that arrive within an
interval to the beginning of the next interval. Although retrieval
algorithm guarantees optimum retrieval given that the number
of requests accepted are within the limit S, this alignment
of data blocks will introduce unexpected delays that may

violate the guaranteed response time. In order to eliminate this
retrieval delay, we developed an online retrieval algorithm that
retrieves the blocks as soon as they arrive.

In online retrieval, instead of an interval based approach, a
time based approach is used. Except the requests that come
exactly at the same time, the requests are retrieved in a first-
come, first-served (FCFS) fashion. The requests that come
exactly at the same time are retrieved together as previously
such that if the retrieval requires more than the optimal number
of accesses, necessary remappings are performed. Different
than the previous retrieval approach, a block is preferably
retrieved from the device having the earliest finish time if no
idle device is available. Next, we compare the performance of
design-theoretic and online algorithms theoretically.
1) Comparison of Retrieval Algorithms: In this section we

develop a theoretical framework to compare interval based
approach that uses design theory and online approach using
online retrieval algorithm. In the first model, requests arriving
within an interval are scheduled at the beginning of the next
interval; the second model schedules requests as soon as they
arrive. To make a fair comparison we assume that there is
no backlog. That means requests received in an interval are
retrieved at the end of the next interval using online algorithm.

Let k denote the set of requests, let DTR(k) denote the
number of accesses required using design-theoretic retrieval
algorithm, and let TDTR(k) denote the time to retrieve k

requests using design-theoretic algorithm. Let OLR(k) denote
the number of accesses required using online algorithm, and let
TOLR(k) denote the time to retrieve k requests using online
algorithm. Following theorem outlines our comparison.
Theorem 1: If there is no backlog and OLR(k) = DTR(k)

then TOLR(k) ≤ TDTR(k).
Proof: Since there is no backlog, we need to consider only

requests received during the previous interval. If OLR(k) =
DTR(k), then starting the requests as soon as they are
received results in earlier or equal retrieval time.

For some set cardinalities, OLR(k) = DTR(k) and for
some sets they may or may not be equal depending on the
actual set. The following is for (9, 3, 1) design.

TABLE II
COMPARISON OF RETRIEVAL ALGORITHMS
|S| 1 2 3 4 5 6

DTR(S) 1 1 1 1 1 2
OLR(S) 1 1 1 1 or 2 1 or 2 2

V. EVALUATION
The first objective of our evaluation is to test whether the

proposed QoS mechanism can provide the specified access
guarantees. We first analyze how the system performs com-
paring it to the existing high performance RAID mechanisms
by using synthetic workloads and design-theoretic retrieval.
After that, we adapt our QoS mechanism to the real world
scenario such that requests are retrieved online and limited
number of blocks are mapped to the fairly bigger number of
data blocks efficiently. Then, we evaluate the performance of
the new system under real world workloads. The system is
evaluated using trace-driven simulations. Modified version of
DiskSim [16] is used as a simulator.

186

A. Simulator
DiskSim is an efficient, accurate, highly-configurable disk

system simulator originally developed to support research into
various aspects of storage subsystem architecture. It has been
used in a variety of published studies to understand modern
storage performance. DiskSim does not support simulation of
flash based storage systems; however, there exist an extended
version of DiskSim developed by Microsoft Research to
provide support for flash simulation [11]. According to the pa-
rameters set by Microsoft Research, a single read request (one
block=8KB) takes 0.132507 milliseconds.
B. Workloads

In this section, we explain the workloads used in our
experiments. We used synthetic workloads for design-theoretic
retrieval and real world workloads to show the adaptability of
the system to the real world applications.
1) Synthetic Workload Generation: We have developed

a trace generation tool that produces ASCII format input
trace for DiskSim. It requires the number of devices, interval
duration, and the number of blocks to be requested for each
interval, and produces the trace by randomly selecting the
blocks to be requested from the available design blocks.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10 20 30 40 50 60 70 80 90 100

of

 B
lo

ck
 R

eq
ue

st
s

P
er

 S
ec

on
d

Intervals(15 minutes each)

Exchange Trace

Maximum
Average

(a) Exchange - reads/sec.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 #

 o
f B

lo
ck

 R
eq

ue
st

s

Intervals(15 minutes each)

Exchange Trace

exchange

(b) Exchange - total reads

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1 2 3 4 5 6

of

 B
lo

ck
 R

eq
ue

st
s

P
er

 S
ec

on
d

Intervals(10-16 minutes each)

TPC-E Trace

Maximum
Average

(c) TPC-E - reads/sec.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 1 2 3 4 5 6

T
ot

al
 #

 o
f B

lo
ck

 R
eq

ue
st

s

Intervals(10-16 minutes each)

TPC-E Trace

tpce

(d) TPC-E - total reads

Fig. 6. Real world traces

2) Real World Traces: As real world workloads, we use
popular multi-device server traces previously used in vari-
ous storage related studies [11], [24], [25]. They are pub-
licly distributed via the online trace repository provided by
SNIA (Storage Networking Industry Association) [3]. The first
workload we use is the Exchange workload, which is taken
from a server running the Microsoft Exchange 2007 inside
Microsoft [22]. It is a mail server for 5000 corporate users
consisting of 9 active volumes and about 40 million block read
requests. The trace covers a 24-hour weekday period starting
at 2:39pm on the 12th December 2007 and it is broken into
15-minute intervals. The second workload we use is TPC-E,
which is an online transaction processing (OLTP) benchmark
simulating the workload of a brokerage firm [8]. The TPC-E
trace covers total of 84 minutes of workload consisting of 13
active volumes and about 101 million block read requests.

The trace is taken on 18th October 2007 and broken into
6 parts of 10-16 minutes each. Trace statistics are provided
in Figure 6. For each interval, Figure 6(a) and Figure 6(c)
show the maximum and average number of read requests per
second for the Exchange and the TPC-E traces respectively.
Figure 6(b) and 6(d) show the total number of read request
made in each interval of the Exchange and the TPC-E traces.

C. Deterministic QoS with Design-theoretic Retrieval
In this section, we compare the QoS performance of the

proposed deterministic scheme with the well known high
performance RAID mechanisms using synthetic workloads,
design-theoretic retrieval, and the (9,3,1) design. Proposed
QoS mechanism for (9,3,1) design with the design-theoretic
retrieval guarantees the retrieval of 5 data blocks in 1 ac-
cess (M=1), 14 data blocks in 2 accesses (M=2), and 27 data
blocks in 3 accesses (M=3) during the given time interval
T . Three different traces are generated by using the synthetic
workload generator. The first trace requests 5 data blocks
for every 0.133 milliseconds, the second trace requests 14
data blocks for every 0.266 milliseconds and the last trace
requests 27 data blocks for every 0.399 milliseconds. All the
requests are placed at the beginning of each time interval. Total
number of 10000 block requests are made in each trace and
the requested blocks are chosen randomly from a pool of 36
blocks. Request size is set as 8KB (one block), which is known
to take 0.132507 milliseconds according to the parameters
of the simulator. Therefore, every request is expected to be
completed within the given time interval T .

b0 b10 b11
d0 d0 d0 d1 d1 d1 d2 d2 d2 d3 d6

d1 d3 d4 d5 d3 d4 d5 d3 d4 d5 d4 d7

d2 d6 d8 d7 d8 d7 d6 d7 d6 d8 d5 d8

d0
b1 b2 b3 b4 b5 b6 b7 b8 b9 d0 d1 d2 d3 d4 d5 d6 d7 d8

b1 b4 b7 b4 b5 b6 b6 b5 b4

b2 b5 b8 b7 b8 b9 b8 b7 b9

d1 d2 d3 d4 d5 d6 d7 d8 d0 d1 d2 d3

d2 d3 d4 d5 d6 d7 d8 d0 d1 d2 d3 d4

b0 b10 b11b1 b2 b3 b4 b5 b6 b7 b8 b9
d0 d1 d3 d4 d5 d6 d7 d8 d0 d1 d2d2

Blocks
d0 d1 d2 d3 d4 d5 d6 d7 d8

b7 b0 b0 b10 b11 b4 b5 b6 b7

b9 b10 b11 b1 b2 b3 b4 b5 b6

RAID−1 Chained
Disks

b0 b1 b3 b4 b5 b6 b7 b8b2

b8 b9 b9 b2 b3
b11

b10
b8 b1

Blocks
b0 b10
d0 d3 d0 d3 d6 d0 d3 d6 d0 d3 d6

d1 d4 d7 d1 d4 d7 d1 d4 d7 d1 d4 d7

d2 d5 d8 d2 d5 d8 d2 d5 d8 d2 d5 d8

d6
b1 b2 b3 b4 b5 b6 b7 b8 b9 b11 d0 d1 d2 d3 d4 d5 d6 d7 d8

b3 b3 b3 b4 b4 b4 b5 b5 b5

b6 b6 b6 b7 b7 b7 b8 b8 b8

RAID−1 Mirrored

b0 b1 b1 b1 b2 b2 b2b0

Disks

b0

b9 b9 b9 b10 b10 b10 b11 b11 b11

Design−theoretic (9,3,1)
Blocks Disks

b0 b0 b1 b2 b3 b1 b3 b2b0

b3 b6 b9 b10 b10 b10 b11 b11 b11

Fig. 7. Allocation schemes

1) Allocation Schemes: For comparison, we use two fa-
mous RAID mechanisms that allow replication; RAID-1 mir-
rored and RAID-1 chained. The comparison is made with
respect to their I/O driver response times, which is defined
as the time between sending the I/O request and receiving
the corresponding response. In all designs, each data block is
replicated over 3 devices and a total of 9 devices are used.
All the allocation schemes are shown in Figure 7. d0, d1, ... ,
d8 denote the devices and b0, b1, ... , b11 denote the blocks.
For each design, the right chart shows the content of each
device and the left chart shows in which devices a specific
block is stored at. In RAID-1 mirrored design, 9 devices are
configured as 3 groups of mirrored devices. Each device in
every group contains the same data such that d0, d1, and d2

187

TABLE III
COMPARISON OF ALLOCATION SCHEMES: RESPONSE TIMES (MS)

Request Size Interval RAID-1 Mirrored RAID-1 Chained (9,3,1) Design-theoretic
(blocks) (ms) Avg Std Max Avg Std Max Avg Std Max

5 0.133 0.136 0.024 0.517 0.132 0.002 0.263 0.132 0.000 0.132

14 0.266 0.221 0.175 2.150 0.187 0.065 0.524 0.185 0.064 0.263

27 0.399 5.006 12.931 59.771 0.304 0.170 1.180 0.263 0.106 0.393

is a group and they are mirrors of each other. In RAID-1
chained design, instead of mirroring the whole content, if the
primary copy of a data block is allocated in device i, other two
copies are allocated in devices {(i+1) mod 9} and {(i+2)
mod 9}. Although it is not shown in the figure, rotations of the
design blocks are also used such that total of 36 data blocks
are supported by each design.
2) Simulation Results: In Table III, I/O driver response time

averages, standard deviations and maximum response times for
all design are given for different M and T values. According
to the results, the QoS guarantees are fulfilled by the proposed
mechanism such that all the block requests are completed
within the given time interval. This can be observed by the
maximum response time values given in the table. For the time
interval of 0.133 ms, maximum response time of (9,3,1) design
is 0.132507 ms. Similarly, for the time intervals of 0.266
ms and 0.399 ms, maximum response times of the proposed
scheme are within the limits. However, other designs fail to
fulfill the given QoS guarantees. Although for some intervals
their response time averages are within the limits, maximum
response times show that some requests took longer than the
given guarantee. Especially the performance of the RAID-1
mirrored design decreases dramatically as the number of block
requests increase since the possibility of the requests ending
up with the same device increases.
D. Deterministic QoS with Online Retrieval

In this section, we evaluate the performance of our QoS
framework using real world workloads and online retrieval
algorithm. For the Exchange trace, we use the (9,3,1) design
and for the TPC-E trace, we use the new (13,3,1) design that
supports 13 devices. The details of the (13,3,1) design and
other designs for different amount of devices can be found
in [18]. We compare the performance of the traces with their
original stand. For the original stand, every block request is
retrieved from the device it is stated in the trace. For this
experiment, we first use FIM to map the design blocks to the
data blocks and then use design-theoretic allocation in order to
distribute the data blocks to the devices according to the design
in use. For FIM, we use the trace one previous than the current
interval for mining and use the result of this mining in the
current interval. Longer history can be used for better matching
of the design blocks to the data blocks. In order to make a fair
comparison, the requests are aligned to 8KB of block sizes
as in DiskSim. By this way, the given guarantee for every
request is defined as 0.133 milliseconds, slightly larger than
the response time of one block request in DiskSim (0.132507).
1) Simulation Results: Figure 8(a) and 8(b) show the aver-

age and the maximum response times for Exchange trace. In
both of the figures, the bottom line shows the response time of
the deterministic QoS and the top line shows the response time

of the original trace. The performance difference is plotted
with a filled pattern. The bottom line is 0.132507 ms in every
interval. In other words, all the requests are completed within
the given QoS guarantees for the deterministic QoS. The top
lines are clearly above the given QoS guarantees for both the
average and the maximum response times. In order to achieve
the deterministic QoS, the admission control mechanism has
to either cancel or delay some of the necessary requests that
violate the guarantees. Since canceling the requests may effect
the running state of applications, we choose the delay option.
Figure 8(c) and Figure 8(d) show the average delay amount
and the percentage of the delayed requests for the same
experiment. Average delay amount for the delayed requests
oscillates between 0.1 and 0.25 ms and the percentage of the
delayed requests is between 3% to 13%. In average, 7% of
the requests are delayed about 0.14 ms.

 0.13

 0.135

 0.14

 0.145

 0.15

 0.155

 0.16

 0.165

 0.17

 0.175

 0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
T

im
es

(m
s)

Intervals(15 minutes each)

EXCHANGE Deterministic Average

avg-diff
det. avg
org. avg

(a) Avg. response time

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
T

im
es

(m
s)

Intervals(15 minutes each)

EXCHANGE Deterministic Max

max-diff
det. max
org. max

(b) Max. response time

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 D
el

ay
(m

s)

Intervals(15 minutes each)

EXCHANGE Deterministic Delay Amount

delay

(c) Avg. delay amount

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 D

el
ay

ed
 B

lo
ck

s(
%

)

Intervals(15 minutes each)

EXCHANGE Deterministic Delay Percentage

delay percentage

(d) Delay percentage
Fig. 8. Exchange deterministic

Figure 9 shows the results of the same experiment for the
TPC-E trace. The first column for each trace interval shows the
average/maximum response times of the deterministic QoS,
which are both 0.132507 ms for every interval. The second
and the third columns show the average and the maximum
response times of the original trace. Although the average
response time of the original trace is close to the deterministic
QoS, it violates the guarantees given by being 0.135145 ms
in average. The maximum response time for the original trace
clearly exceeds the QoS limits in every interval. The labels on
each interval show the percentage of the delayed requests and
the average delay amount. Percentage of the delayed requests
are about 2 to 3% and average delay amount is about 0.03 ms.

E. Statistical QoS with Online Retrieval
In this section, we show the results of the statistical QoS for

the Exchange and the TPC-E workloads using online retrieval.

188

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5 6

R
es

po
ns

e
T

im
es

(m
s)

Intervals(10-16 minutes each)

TPC-E Deterministic

0.132

Delay(ms)
Perc(%)

0.035
2.87

0.034
2.71

0.034
3.34

0.034
3.28

0.034
3.28

0.036
0.04

Det. QoS Org-Avg Org-Max

Fig. 9. TPC-E deterministic

We use the same designs and the experimental settings as in
Section V-D. In this case, we can control the percentage of the
delayed requests using ε, which represents the probability that
a request cannot be completed within the given limits. Note
that for the deterministic case ε = 0 and the percentage of the
delayed requests is expected to decrease as the ε increases.
However, this decline in the percentage of the delayed request
is also expected to cause an increase in the average response
time of the system.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 D

el
ay

ed
 B

lo
ck

s(
%

)

Intervals(15 minutes each)

EXCHANGE Statistical Delay Percentage

epsilon=0
epsilon=0.03
epsilon=0.06

(a) Exch - delay per.

 0.1325

 0.133

 0.1335

 0.134

 0.1345

 0.135

 0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
T

im
e(

m
s)

Intervals(15 minutes each)

EXCHANGE Statistical Average

epsilon=0
epsilon=0.03
epsilon=0.06

(b) Exch - avg. response time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6

P
er

ce
nt

ag
e

of
 D

el
ay

ed
 B

lo
ck

s(
%

)

Intervals(10-16 minutes each)

TPC-E Statistical Delay Percentage

epsilon=0
epsilon=0.01
epsilon=0.02

(c) TPC-E - delay per.

 0.1325

 0.13251

 0.13252

 0.13253

 0.13254

 0.13255

 0.13256

 0.13257

 0.13258

 0.13259

 1 2 3 4 5 6

R
es

po
ns

e
T

im
e(

m
s)

Intervals(10-16 minutes each)

TPC-E Statistical Average

epsilon=0
epsilon=0.01
epsilon=0.02

(d) TPC-E - avg. response time
Fig. 10. Exchange statistical

1) Simulation Results: Figure 10(a) and 10(c) show the
percentage of the delayed requests for the Exchange and
the TPC-E workloads for different values of ε. As expected,
percentage of the delayed requests decreases as the ε increases.
Figure 10(b) and 10(d) show the average response times of the
Exchange and the TPC-E workloads for the same ε values.
Since we are not delaying some of the conflicting requests
depending on the ε value, average response times increase as
the ε increases.

F. FIM Performance
In this section, first we show time and memory requirement

of FIM and then the benefit of using FIM for the Exchange
and the TPC-E traces. In our experiments, we use fim apriori-
lowmem [28] implementation since it can deal with large
datasets efficiently. Source code of the implementation is
publicly available in [2]. Time and memory requirement of fim

apriori-lowmem for set size = 2 can be found in Table IV.
For this experiment, we used a machine with Intel Xeon E5205
Dual CPU Dual Core processors having total of 4 cores, each
core with 1.86 GHz of clock speed, and 16GB of physical
memory running on an Ubuntu 10.04 operating system. The
program uses one core only. As an interval T , we chose 0.133
ms since it is the response time in our system. We show the
results for the trace intervals having the largest and the smallest
request sizes of both exchange and TPC-E traces. According
to the results for support = 1, Exchange takes 1 to 11 seconds
to mine with the peak memory usage of 240 to 767 MB and
TPC-E takes 1 to 90 seconds to mine with the peak memory
usage of 0.3 to 3.4GB. Mining time and the peak memory
usage can be reduced by increasing the support such that
tpce3 takes 56 seconds to mine with 2.2GB peak memory
usage for support = 3.

TABLE IV
PERFORMANCE OF FIM

Trace Requests Size Support Peak Memory Time

exch48 14.3 K 1 240 MB 1.08s
exch52 6.8 M 1 767 MB 11.43s

tpce6 104 K 1 316 MB 1.21s
tpce3 27.6 M 1 3.4 GB 1m30s
tpce3 27.6 M 3 2.2 GB 56.69s

Figure 11(a) and Figure 11(b) show the percentage of blocks
that are matched according to the FIM results for Exchange
and TPC-E respectively. In FIM, we mined only the trace one
previous than the current trace and used this information for
the current trace. Therefore, the result is 0 for the first interval.
For Exchange, in average 17% of the blocks found mining
the previous interval is encountered in the current interval.
For TPC-E; in average 87% of the blocks found mining the
previous interval is encountered in the current interval.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

M
at

ch
 P

er
ce

nt
ag

e
(%

)

Intervals(15 minutes each)

Exchange Trace

exchange

(a) Exchange

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6

M
at

ch
 P

er
ce

nt
ag

e
(%

)

Intervals(10-16 minutes each)

TPC-E Trace

tpce

(b) TPC-E

Fig. 11. Matching performance of FIM results

G. Retrieval Performance

In Section V-D, we showed the average delay amount of the
delayed requests for the Exchange and the TPC-E traces using
online retrieval. In this section, we use the design-theoretic
retrieval for the same settings to compare the performances
of these two retrieval algorithms in terms of the average
delay amounts they introduce. Figure 12(a) and 12(b) show
the average delay amounts caused by the Exchange and the
TPC-E traces respectively. In both of the figures, bottom lines
show the delay amount introduced by the online retrieval
and the top lines show the delay amount introduced by the
design-theoretic retrieval. The performance difference of the
retrieval algorithms is plotted with a filled pattern. Since the

189

online retrieval retrieves the requests as soon as they arrive,
there is no additional retrieval delay caused for the alignment
of the requests as in the design-theoretic retrieval. For the
Exchange trace, online retrieval causes 0.12 ms lesser delay
in average than the design-theoretic retrieval. For the TPC-E
trace, online retrieval causes 0.17 ms lesser delay in average
than the design-theoretic retrieval.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 D
el

ay
(m

s)

Intervals(15 minutes each)

EXCHANGE Delay Comparison

delay-diff
online

design

(a) Exchange

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 3 4 5 6

A
ve

ra
ge

 D
el

ay
(m

s)

Intervals(10-16 minutes each)

TPC-E Delay Comparison

delay-diff
online

design

(b) TPC-E

Fig. 12. Delay comparison of retrieval algorithms

VI. CONCLUSION

Many applications require high performance I/O operations
with real time performance guarantees. Flash based storage
arrays have emerged as a feasible approach for these ap-
plications; however, a simple and practical QoS framework
is crucial to provide predictable performance. In this paper,
we proposed a novel replication based QoS framework for
flash arrays. The proposed framework is simple and provides
deterministic or probabilistic response time guarantees using
simple admission control algorithms. With extensive experi-
mental results, we show its practicality, superiority over the
existing RAID solutions and applicability to the real world
scenarios by using real world traces. Utilization of the system
can be tuned by adjusting the parameters. We believe proposed
framework will lead to better utilization of flash arrays by
improving application performance with QoS framework.

VII. ACKNOWLEDGMENTS

This work is partially supported by Army Research Of-
fice (ARO) Grant W911NF-11-1-0170.

REFERENCES

[1] Amazon simple storage service (amazon s3). http://aws.amazon.com/s3/.
[2] Frequent itemset mining imp. repository. http://fimi.ua.ac.be/.
[3] Iotta repository. http://iotta.snia.org. Storage Networking Ind. Assoc.
[4] Windows azure. http://www.microsoft.com/windowsazure/.
[5] Sun storage f5100 flash array. http://www.oracle.com/us/043970.pdf,

2009. Oracle Datasheet. Available online (6 pages).
[6] Nimbus data s-class enterprise flash storage systems. http://www.

nimbusdata.com/products/Nimbus S-class Datasheet.pdf, 2010.
[7] Ramsan-630 flash solid state disk. http://www.ramsan.com/files/

download/212, August 2010. Texas Memory Systems White Paper.
[8] Tpc benchmark e. http://tpc.org/tpce/spec/v1.12.0/TPCE-v1.12.0.pdf,

June 2010. Standard Specification.
[9] Violin 3200 flash memory array. http://www.violin-memory.com/assets/

3200-datasheet.pdf, 2010. Violin 3200 Memory Datasheet.
[10] Violin 6000 flash memory array. http://www.violin-memory.com/assets/

Violin Datasheet 6000.pdf?d=1, 2011. Violin 6000 Memory Datasheet.
[11] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark

Manasse, and Rina Panigrahy. Design tradeoffs for ssd performance. In
ATC’08: Usenix Annual Technical Conference, pages 57–70, Berkeley,
CA, USA, 2008. USENIX Association.

[12] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining associ-
ation rules between sets of items in large databases. In SIGMOD ’93:
Proceedings of the international conference on Management of data,
pages 207–216, New York, NY, USA, 1993. ACM.

[13] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivo-
nen, and A. Inkeri Verkamo. Fast discovery of association rules. pages
307–328. American Association for Artificial Intelligence, Menlo Park,
CA, USA, 1996.

[14] Nihat Altiparmak and A. Ş. Tosun. Generalized optimal response time
retrieval of replicated data from storage arrays, 2012. Technical Report.

[15] Nihat Altiparmak and A. Ş. Tosun. Integrated maximum flow algorithm
for optimal response time retrieval of replicated data. In 41st Inter-
national Conference on Parallel Processing (ICPP 2012), Pittsburgh,
Pennsylvania, September 2012.

[16] John S. Bucy, Jiri Schindler, Steven W. Schlosser, Gregory R. Ganger,
and Contributors. The disksim simulation environment version 4.0
reference manual. Technical report, Carnegie Mellon University Parallel
Data Lab, May 2008.

[17] John Chung-I Chuang and Marvin A. Sirbu. Distributed network storage
service with quality-of-service guarantees. In INET, 1999.

[18] C.J. Colbourn and J.H. Dinitz. The CRC handbook of combinatorial
designs. The CRC Press series on discrete mathematics and its
applications. CRC Press, 1996.

[19] H. Ferhatosmanoglu, A. Ş. Tosun, G. Canahuate, and A Ramachandran.
Efficient parallel processing of range queries through replicated declus-
tering. Journal of Distributed and Parallel Databases, 20(2):117–147,
2006.

[20] H. Ferhatosmanoglu, A. Ş. Tosun, and A. Ramachandran. Replicated
declustering of spatial data. In ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, pages 125–135, June 2004.

[21] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. In SIGMOD ’00: Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, pages 1–12,
New York, NY, USA, 2000. ACM.

[22] S. Kavalanekar, B. Worthington, Qi Zhang, and V. Sharda. Characteri-
zation of storage workload traces from production windows servers. In
IEEE International Symposium on Workload Characterization, IISWC
2008., pages 119 –128, sept. 2008.

[23] Emerson Liebert. Taking the enterprise data center into the cloud. http:
//whitepapers.datacenterknowledge.com/content11369.

[24] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and A. Rowston.
Everest: Scaling down peak loads through i/o off-loading. In Operating
Systems Design and Implementation, pages 15–28, 2008.

[25] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowston.
Migrating server storage to ssds: Analysis and tradeoffs. In EuroSys
2009, pages 145–158, April 2009.

[26] Kwanghee Park, Dong-Hwan Lee, Youngjoo Woo, Geunhyung Lee, Ju-
Hong Lee, and Deok-Hwan Kim. Reliability and performance enhance-
ment technique for ssd array storage system using raid mechanism.
ISCIT’09, pages 140–145, Piscataway, NJ, USA, 2009. IEEE Press.

[27] Ilia Petrov, Guillermo Almeida, Alejandro Buchmann, and Ulirch Grf.
Building large storage based on flash disks. In Proceedings of ADMS
2010, In conjunction with VLDB 2010, September 2010.

[28] Balázs Rácz, Ferenc Bodon, and Lars Schmidt-Thieme. Benchmarking
frequent itemset mining algorithms: from measurement to analysis. In
Proceedings of ACM SIGKDD International Workshop on Open Source
Data Mining (OSDM’05), pages 36–45, Chicago, IL, USA, August 2005.

[29] P. Sanders, S. Egner, and K. Korst. Fast concurrent access to parallel
disks. In ACM-SIAM Symposium on Discrete Algorithms11th , 2000.

[30] A. Ş. Tosun. Replicated declustering for arbitrary queries. In ACM
Symposium on Applied Computing19th , pages 748–753, March 2004.

[31] A. Ş. Tosun. Design theoretic approach to replicated declustering.
In International Conference on Information Technology Coding and
Computing, pages 226–231, April 2005.

[32] A. Ş. Tosun. Analysis and comparison of replicated declustering
schemes. IEEE Transactions on Parallel and Distributed Systems,
18:1578–1591, November 2007.

[33] A. Ş. Tosun and H. Ferhatosmanoglu. Optimal parallel I/O using
replication. In Proceedings of International Workshops on Parallel
Processing (ICPP), pages 506–513, Vancouver, Canada, August 2002.

[34] Y. Wei, S. Son, J. Stankovic, and K. Kang. Qos management in
replicated real-time databases. In RTTS, 2003.

[35] Mohammed J. Zaki. Scalable algorithms for association mining. IEEE
Trans. on Knowl. and Data Eng., 12(3):372–390, 2000.

190

