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Abstract—The growing energy consumption of data centers is a
compelling global problem and effective server consolidation is at
the heart of energy efficient cloud data centers. A variant of bin
packing can be used to model the server consolidation problem,
where the constraints are multidimensional and heterogeneous
vectors rather than scalars and the goal is to satisfy the requested
resource allocation using the minimum number physical servers.
Since bin packing is NP-hard, we rely on heuristics for practical
solutions. Variations of First Fit Decreasing (FFD) based heuris-
tics have been shown to be effective both in theory and practice
for the one dimensional homogeneous case. However, the multidi-
mensional and heterogeneous aspects of the server consolidation
problem make it more complicated, requiring additional research
to adapt FFD to the server consolidation problem. In this paper,
we present a new FFD-based server consolidation technique using
a Monte Carlo method and Shannon entropy, which considers
resource bottlenecks and dynamically adjusts to variance in
the utilization of different resources. The proposed heuristic
outperforms existing techniques in all scenarios, achieving within
2-5% of optimal on average for medium to high variance in
resource utilization, and within 10% worse than optimal on
average for all scenarios.

Index Terms—bin packing; server consolidation; data centers

I. INTRODUCTION

Users and enterprises heavily utilize cloud-based services

instead of purchasing and managing their own hardware. As a

result, the energy consumption of data centers has become

an important issue. In 2015, the worldwide annual energy

consumption of data centers was estimated to be around

416 TWh (roughly $55 billion) [1]. This is much as the

annual energy consumption of large industrialized countries

like UK and France, according to the CIA World Factbook [2].

Furthermore, the energy cost of data centers is expected to

double every five years [3]. In addition to its economic burden,

this consumption has a negative impact on the environment.

According to the Environmental Protection Agency (EPA),

generating 1 KWh of electricity results in an average of 1.55

pounds of carbon dioxide emissions. With more than 400 TWh

of yearly consumption, improvements in the energy efficiency

of data centers can have a massive economic and environmen-

tal impact on society. The following quote from Eric Schmidt,

the former CEO of Google, emphasizes the importance of

energy-efficient data centers from the perspective of cloud

providers: “What matters most to the computer designers at
Google is not speed but power—low power, because data
centers can consume as much electricity as a city.” Amazon

estimates the energy-related costs of its data centers as 42%

of their total budget, including both direct power consumption

and cooling cost [3].

Virtualization is a proven resource sharing technology used

in cloud architectures, and effective server consolidation is at

the heart of energy efficient cloud data centers. By packing

virtual machines into the fewest possible physical machines, an

effective server consolidation allows unused physical machines

to be switched to low power states and can achieve significant

energy savings [4]. The US Department of Energy estimated

that with effective server consolidation, the energy consump-

tion of data centers can be reduced by around 520 TWh within

the five-year period of 2015 and 2020 [5].

Server consolidation in cloud data centers can be formulated

as a variant of the bin packing problem, where items and

bins are multidimensional and heterogeneous vectors rep-

resenting resource demands and available server capacities.

In bin packing theory, first fit decreasing based heuristics

are proven to be effective with near optimal solutions in

the one dimensional homogeneous bin case [6]; however,

sorting multidimensional items and bins is a difficult task

where dimensions have incomparable resources such as CPU

cores, memory, network bandwidth, etc. An additional com-

plexity is that bins have different (heterogeneous) capacities.

Therefore an efficient dimensionality reduction technique that

converts multidimensional vectors to sortable scalars, as well

as handling the heterogeneity of bins, is necessary in order

to achieve a tight packing. Existing approaches either ignore

the heterogeneity of bins, or perform dimensionality reduction

based on predetermined resource utilization assumptions prone

to generate sub-optimal solutions. Therefore, new research is

necessary to perform better server consolidation and achieve

improved energy efficiency in cloud data centers.

In this paper, we propose a new server consolidation

heuristic that can perform near optimal resource allocation

in cloud data centers for reduced energy consumption. The

proposed approach can adjust dynamically to resource utiliza-

tion variance of different dimensions and automatically predict

resource bottlenecks based on a Monte Carlo method and

Shannon entropy. We theoretically formulate and solve the op-

timal server consolidation problem using a linear programming

model and provide extensive performance evaluation by ana-

lyzing low, medium, and high resource utilization variances,

as well provide comparisons with optimal values.

263

2019 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)

2330-2186/19/$31.00 ©2019 IEEE
DOI 10.1109/CloudCom.2019.00046



II. BACKGROUND, MOTIVATION, AND RELATED WORK

In this section, we first provide the preliminaries of bin

packing and server consolidation. Next, we present the moti-

vation and related work.

A. Bin packing

Many resource allocation problems can be modeled as a

variant of bin packing. In order to clearly define the problem

with its realistic constraints and show its difficulty, this section

summarizes the variants of bin packing that are related to the

server consolidation problem.

1) Classical Bin Packing (BP): Given a list I of m real

numbers I1, I2, I3, . . . , Im, where each Ii ∈ (0, 1] represents

the size (demand or requirement) of an item, the classical

Bin Packing (BP) problem aims to pack all items I into the

minimum number of unit capacity bins so that the sum of the

sizes of all items packed into any given bin does not exceed

one [7]. An inexhaustible supply of bins are assumed to be

available for packing and all bins are assumed to be initially

empty. Classical BP is one of the most well known NP-hard

problems in the field of combinatorial optimization [8].

2) Bin Packing with Heterogeneous Bins (BPHB): Bin

Packing with Heterogeneous Bins (BPHB) is one generaliza-

tion of the classical BP problem with a finite collection of

bins allowed to have different capacities. This is in contrast

to classical BP where the supply of bins is inexhaustible and

all bins start with unit capacity. This generalization is also

referred to as the Variable Sized Bin Packing problem, and is

NP-hard as it reduces to the classical BP when only one bin

size is permitted [9].

3) Vector Bin Packing (VBP): Vector Bin Packing

(VBP) [10] is another generalization of the classical BP

problem in which both item sizes and bin capacities are d-

dimensional vectors rather than scalars. The bins are homoge-

neous and an inexhaustible supply of them are available for

packing. A valid packing in the d-dimensional case requires

that the vector sum of the sizes of all items packed into any

given bin does not exceed the unit vector. VBP is NP-hard for

every d [11], [12], [13].

4) Vector Bin Packing with Heterogeneous Bins (VBPHB):
Vector Bin Packing with Heterogeneous Bins (VBPHB) com-

bines BPHB and VBP in a single problem such that bins are

allowed to have different vector capacities [14]. For VBPHB,

in addition to a list of m items I1, I2, I3, . . . , Im representing

item sizes as vectors, we are also given a list of n bins

C1,C2,C3, . . . ,Cn representing bin capacities as vectors.

Unlike BP, BPHB, and VBP, VBPHB does not assume an

inexhaustible supply of bins; instead, a solution must place all

items into a subset of the provided n bins in order to be valid.

B. Server Consolidation in the Cloud

In virtualized data centers, such as those using a cloud

architecture, server consolidation involves the Virtual Ma-

chine Placement (VMP) problem, where we wish to assign

Virtual Machines (VMs) with multidimensional resource re-

quirements, such as CPU and memory, to the fewest possible

Physical Machines (PMs) or servers with sufficient available

resources. For energy efficiency, PMs that are not assigned

VMs can be switched to a low power state. Various power

states are defined by the ACPI standard and switching power

states is managed directly by the operating system [15]. Con-

solidating VMs into the fewest PMs is a common technique

and can provide a significant reduction in data center energy

consumption [4]. For the rest of this paper, we simply model

server consolidation in the cloud as the VMP problem.

Considering energy efficiency as the main objective,

VMP is defined as follows: Given m virtual machines

VM1,VM2, . . . ,VMm with resource requirements (CPU cores,

memory, network bandwidth, etc.) and n physical machines

PM1,PM2, . . . ,PMn with resource capacities for d resource

types, VMP aims to map VMs to PMs by satisfying the

resource demands of the VMs, respecting the resource con-

straints of the PMs, and minimizing the number of PMs used in

the mapping. A single PM may host multiple VMs as long as

it respects the resource constraints. PM capacities are expected

to be heterogeneous as they represent the available resources of

PMs. VMP is an NP-hard problem and equivalent to VBPHB,

where VMs represent items, PMs represent bins, and resource

types represent dimensions [14]. VMP can be expressed in a

linear form as follows:

Minimize:
n∑

j=1

Xj

Subject to:
n∑

j=1

Bij = 1; i = 1, . . . ,m

m∑
i=1

(DikBij) ≤ Cjk;

{
j = 1, . . . , n

k = 1, . . . , d

Each Bij is a binary variable that is set to 1 if VMi is

mapped to PMj , or otherwise set to 0. Therefore Bij represents

the final mapping. The first constraint (
∑n

j=1 Bij = 1) ensures

that every VM is only mapped to a single PM. Cjk is the

available capacity of PMj for resource type k. The sum∑m
i=1(DikBij) represents the resource usage of PMj , since

Dik (a predefined constant) is the resource demand of VMi.

Finally, the objective function minimizes the number of PMs

used in the placement. This is guaranteed using a binary

indicator variable Xj , which is set to 0 if
∑m

i=1 Bij = 0, and

set to 1 if
∑m

i=1 Bij > 0. Therefore Xj indicates whether PMj

is used in the placement or not, and
∑n

j=1 Xj is the number

of PMs used in the placement. The mapping represented by

the Bij values is guaranteed to use the minimum number of

PMs satisfying the given resource constraints.

This formulation uses mn Bij variables and n Xj vari-

ables. All variables are binary and the total number of unique

variables is n(m + 1). In addition, it uses a total of m + n
constraints. This is an Integer Linear Programming (ILP)

formulation, which is classified as NP-hard [16] and can be

solved optimally using an LP solver; however, this approach
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is expected to be prohibitively slow beyond m and n of a few

hundred [12].

The classical BP problem and its generalizations that we

have covered in this paper (including VMP) are summarized

in Table I with their item and bin characteristics.

Problem Item size Bin capacity

BP Ii ∈ (0, 1], i ∈ {1, . . . ,m} C = 1, infinite bins
BPHB Ii ∈ (0, 1], i ∈ {1, . . . ,m} C ∈ (0, 1], infinite bins

VBP Ii ∈ (0, 1]d, i ∈ {1, . . . ,m} C = 1d, infinite bins

VBPHB Ii ∈ (0, 1]d, i ∈ {1, . . . ,m} Cj ∈ (0, 1]d, j ∈ {1, . . . , n}
VMP Ii ∈ R

d
> 0, i ∈ {1, . . . ,m} Cj ∈ R

d
> 0, j ∈ {1, . . . , n}

TABLE I: Bin packing and its generalizations

A problem instance of VBPHB or VMP is infeasible if

a placement for all VMs or items does not exist. This is

possible, for example, in cases with too few bins, especially

high contention for a particular resource, or simply where total

demand exceeds total availability. In such cases, obviously no

algorithm or heuristic will find a solution. However, it is also

possible for certain heuristics to be unable to find a solution

despite the problem instance being feasible.

In addition, VBP heuristics may require preprocessing such

as normalization of item sizes and bin capacities in order to

provide a better solution, which can be calculated indepen-

dently for each dimension, by mapping the bin capacity in

that dimension to 1 and the item sizes in that dimension to a

size no greater than one, in proportion with the bin capacity.

C. Motivation

In bin packing theory, First Fit Decreasing (FFD)-based

heuristics are known to be effective both in theory and in

practice for the classical one-dimensional homogeneous BP

case. FFD guarantees to find an allocation with at most
11
9 OPT+1 bins [7], [6]. The basic idea in FFD is to sort items

by their size and pack them from largest to smallest into the

first bin in which it will fit. However, the multidimensional and

heterogeneous aspects of VMP make it more complicated than

one-dimensional homogeneous BP, requiring adaptations in the

FFD technique. For heterogeneous bins, a natural approach is

to sort them in decreasing order as well, based on some criteria

such as their remaining capacity or their likelihood to be used

(popularity) in packing. Handling the multidimensionality of

VBP and VMP is more complicated since both items and bins

are vectors, composed of multiple incomparable dimensions

such as CPU cores, memory sizes, network bandwidths, etc.

An effective dimensionality reduction technique is necessary

to convert vectors into sortable scalar values.

D. Related work

VBP was first investigated for homogeneous bins by Kou

et al. [11]. In this work, the authors proposed three simple

dimensionality reduction techniques for FFD: Lexicographical

(Lex), Maximum Component (MaxComp), and Maximum Sum

(MaxSum), which sorts items based on the lexicographical

comparison of each dimension, maximum size in any dimen-

sion, and the sum of all dimensions, respectively. Maruyama

et al. later proposed multiple follow up techniques such as

ExpSum that sorts items according to the sum of exponents of

dimensions, AvgSum that sorts items according to a weighted

sum of dimensions, and Prod that sorts items according to the

product of dimensions [17].

With the advent of cloud computing and virtualized data

centers in general, VBP received more recent attention. Var-

ious recent works adapted these dimensionality reduction

techniques for the VMP problem [13], [14], [18], [19], [20].

Panigrahy et al. proposed DotProd, a greedy bin-centric

heuristic for which item ordering is based on a weighted dot

product of the item demand and remaining bin capacity vectors

[13]. Jangiti et al. proposed an aggregated ranking technique

called AR, which first ranks items for each dimension sepa-

rately, and then aggregates these rankings by summing them

to determine an item ordering [20]. However, as both these

techniques were intended for VBP with homogeneous bins,

when applied to VBPHB, they are unaware of the diversity

of remaining capacities of heterogeneous bins. Gabay et al.

generalized DotProd for VBPHB and proposed three variants

with different weight vectors: i.) none, or weight of 1; ii.)

weight based on both bin capacity and item requirements; and

iii.) weight based solely on bin capacity [14]. The goal of

Panigrahy’s DotProduct for VBP was to minimize the number

of bins used; however, the goal of Gabay’s problem was to

maximize the number of problem instances in which a feasible

packing for all items is found. Gabay’s generalized DotProd
technique, DP (Gabay), has not yet been evaluated for the

server consolidation problem (VMP), where the aim is to

minimize the number of bins used in packing.

In the VMP problem, resource utilization of the dimensions

considered for the entire data center, such as CPU, memory,

and network, changes dynamically and it is generally not

possible to predict bottlenecks in advance. Previously proposed

techniques do not consider the intricate interaction between

resource utilization of multiple dimensions, and therefore fail

to perform effective server consolidation when the resource

utilization of dimensions varies over time or deviates from

assumptions. For example, Lex assumes that the first dimen-

sion is most likely to be the bottleneck, while MaxComp
prioritizes resource allocation based on the dimension with

the maximum resource demand for each item. Prod assumes

that every resource will be utilized evenly, while the AvgSum
variants try to estimate resource bottlenecks in advance using

predetermined weights. On the other hand, our proposed

MonteCarlo technique adjusts dynamically to resource uti-

lization variations because it requires no prior assumptions

of resource importance; the intricate effects of interactions

between resources are discovered through random sampling.

III. MONTE CARLO BASED SERVER CONSOLIDATION

The primary issue when generalizing greedy heuristics such

as first fit decreasing (FFD) from one to multiple resources is

how to sort items and bins in “decreasing” order. For one

dimensional BP, item demands are scalars, so determining the

“largest” item or bin is trivial; however, with vector demands
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and capacities, the notion of “largest” is less straightforward.

Techniques such as Prod, AvgSum, MaxComp, Lex, etc., are

based on mathematical transformations of these vectors to

sortable scalars. In our Monte Carlo based technique, we try to

reduce this dimensionality to item and bin rankings by looking

at more fundamental properties of restrictiveness and potential,

based on measurements of random sampling.
The fundamental property of a “large” item is that its

resource demands are restrictive—it has fewer options as to

where it can be placed than a “smaller” item. Where an

item can be placed is not only a function of its demands,

but also of its interactions with other items. For example,

suppose that an item fits within the capacities of two bins,

but another more restrictive item may only fit in one of

these bins; this reduces the options for the first item. In our

proposed MonteCarlo heuristic, we wish to rank items based

on the restrictiveness of their placement options while also

considering such interactions. We estimate this restrictiveness

using information gained from random sampling, as measured

by Shannon entropy.
A “large” bin is one with high resource capacities, but more

specifically one that has the option or potential for holding

greater quantities of items or more restrictive items. Using the

same random sampling data acquired to sort items, we sort

bins by the popularity of samples.

Algorithm 1 MonteCarlo based server consolidation

In: bin capacities Cb, item demands Ii,
number of bins n, number of items m, number of samples k

Out: assignment P : i→ b

1: initialize m× n matrix M to zero
2: for sample in {1, . . . , k} do
3: Bb ← Cb ∀b ∈ {1, . . . , n} // copy bins
4: for all i in randomized (1, . . . ,m) do
5: for all b in randomized (1, . . . , n) do
6: if Ii ≤ Bb for all d dimensions then
7: Mi,b += 1
8: Bb -= Ii
9: break // next item i

10: for i in {1, . . . ,m} do
11: rowsum←∑n

j=0 Mi,j

12: Hi ← 0
13: for b in {1, . . . , n} do
14: p←Mi,b/rowsum
15: Hi -= p log2 p

16: (optionally call squeeze)
17: item-order ← sort items i ∈ {1, . . . ,m} by Hi (ascending)
18: for b in {1, . . . , n} do
19: Sb ←

∑m
i=1 Mi,b

20: bin-order ← sort bins b ∈ {1, . . . , n} by Sb (descending)
21: for item in item-order do
22: for bin in bin-order do
23: if Iitem ≤ Cbin for all d dimensions then
24: P[item]← bin
25: Cbin -= Iitem

We explain our MonteCarlo technique through an example.

A formal description is given in Algorithm 1. Suppose that we

have five items (m = 5) to place in four bins (n = 4) consider-

ing two resources (d = 2). We can think of the resources as the

number of vCPU cores and GB of RAM, or any other arbitrary

resources. As listed at the left of Figure 1, our items’ resource

demands are (1, 2), (4, 4), (4, 1), (1, 1), and (4, 8). Our bins’

resource capacities are (1, 1), (8, 12), (4, 4), and (2, 8). This

example is constructed so that the last and most demanding

item (4, 8) can only fit into the “largest” bin (8, 12), the least

demanding item (1, 1) can fit anywhere, and only it can fit

into the “smallest” bin (1, 1). The other items have a variety

of options as to where they can be placed.

Bins
0 1 2 3 Entropy

Items (1, 1) (8, 12) (4, 4) (2, 8) H

0 (1, 2) 0 32 22 23 1.564 bits

1 (4, 4) 0 53 24 0 0.895 bits

2 (4, 1) 0 38 27 0 0.979 bits

3 (1, 1) 29 27 19 25 1.983 bits

4 (4, 8) 0 51 0 0 0 bits

Sum: 29 201 92 48

Fig. 1: MonteCarlo matrix example with k = 100 samples

Starting with an m × n matrix of zeros, with one row

for every item and one column for every bin, we apply

a predetermined number k of Monte Carlo samples. The

result of k = 100 samples is shown in Figure 1. For each

sample, we randomly attempt to place each item into a random

bin. First, we create a temporary copy of the state of bins.

Then we place each item, in random order, into the first

bin in which it will fit (searching bins in random order).

After each placement of item i into bin b, we record it by

incrementing value (i, b) in the matrix and subtracting the

allocated resources from the availability of the bin’s temporary

state. If at any time an item cannot be placed in any bin,

we simply skip it and continue to the next item. This naive

randomized technique for each sample is not expected to yield

feasible solutions in which every item is placed; many or all

samples will have skipped some items. Notice in Fig. 1 that

the sum of each row is not always equal to the number of

samples (100). Many samples did not place every item. Each

sample, however, produces a little bit of information, and the

aggregation of these samples provides sufficient information

for a well-informed FFD placement.

After populating the matrix with k random samples, we

calculate the Shannon entropy of each row and the summation
of each column, which are used to sort items and bins

respectively for an item-centric first fit decreasing placement.

Each row can be thought of as a probability distribution

of where an item might be placed, taking into consideration

interactions with other items. Our “decreasing” of FFD is a

decreasing order of information about these probability distri-

butions, or increasing by entropy. In our example there are four

bins, so the most information we can have is log2 4 = 2 bits.

The item with the lowest entropy (uncertainty) of 0 bits, or

greatest information of 2 bits, is the “largest” item (4, 8).
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Since there is no uncertainty from our sampling (the choice is

obvious), we wish to place item 4 first. On the other hand, the

“smallest” item (1, 1) has the greatest entropy of 1.983 bits,

which is nearly the maximum 2 bits. It can likely be placed

in any bin and has the least restrictive demands, so we wish

to place it last. We sort items by increasing entropy: (4, 8),
(4, 4), (4, 1), (1, 2), (1, 1), which is consistent with intuitive

notions of decreasing resource demand.

We sort bins in decreasing order by popularity, or column

sum from the matrix. In Fig. 1, the bin most frequently used by

random sampling is bin 1. It has the largest resource capacities

(8, 12) and the greatest column sum 201. We use this sample

popularity to predict the relative “size” of bins, and search bins

in decreasing order by popularity. It is interesting to compare

bins 2 (4, 4) and 3 (2, 8). Each has twice the capacity of

the other in one dimension; however, bin 2 has almost twice

the column sum (92) as bin 3 (48). This suggests, without

normalization or direct comparison of resources, that having

more of the first resource makes a bin “larger” than more of

the second. The search order of bins is (8, 12), (4, 4), (2, 8),
and (1, 1).

Once we obtain a ranking of items and bins, we apply an

item-centric first fit decreasing placement. We place each item,

in increasing order of entropy, in the first bin in which it will

fit, searching through bins by increasing popularity. The time

complexity of the proposed MonteCarlo heuristic, shown in

Alg. 1, is O(dnm+n log n+m logm) for constant samples k.

Using a comparison of entropies we determine the relative

“restrictiveness” of an item’s placement, the fundamental

property of its “size.” Notice that this technique does not

require normalization of resource values. There is no addition

or multiplication of incompatible units of measure and no

direct comparison of one dimension to another.

The sorting of items by MonteCarlo relies on informa-

tion accumulated about each item from random sampling.

This requires a sufficient number of samples k such that

the distribution of each row of the matrix has converged

to a representative state. The entropy for all items can be

represented as a column vector, as on the right side of Fig. 1.

This example represents (by construction) an ideal case, where

its mean of 1.084 bits is in the middle of the possible range

[0, 2) with a wide standard deviation of 0.672 bits.

In some cases, even with a sufficient number of random

samples, there is too little information gained to provide a

valuable item ordering, which can lead to poor performance.

For example, suppose that we have only large bins and that

all items can be placed anywhere. If there is not enough

contention for the last available resources, then little signal

appears in the entropy vector. In such cases, the entropy is

high for all items and with low variance. We have observed

this in cases with low resource utilization variance. In order

to improve item ordering in such situations, we propose a

“squeeze” method of additional modified random samples that

artificially lower bin capacities for resource contention.

After populating the MonteCarlo matrix and calculating

entropy for all items, if the standard deviation of this entropy

vector is less than 10% of its mean, we apply additional

“squeeze” samples. This threshold is experimental; when

greater than 10%, we considered MonteCarlo’s performance

to be adequate without using additional squeeze samples. For

each additional sample, we “squeeze” each bin by lowering

its capacity in all dimensions by 1% and apply a random

placement as before. In order to boost the effect of these

samples on the entropy calculation, we gradually increase the

weight of the tallies applied to the matrix. In less than 100

samples of 1% reduction each, eventually the bins become so

small that no items are placed, and the squeezing stops.

IV. EVALUATION

In this section, we evaluate the performance of the proposed

MonteCarlo heuristic by comparing it to existing techniques

as well as optimal solutions.

A. Experimental setup

We performed simulations using an in-house simulator

written in Python supported by IBM’s CPLEX LP solver [21]

to obtain optimal results. Realistic workloads vary widely

across organizations, making it difficult to generalize from any

given set of real workloads. Following the work of Panigrahy

et al. [13], we ran the heuristics on synthetic instances for

m = n = 100 and m = n = 1000 with a variety of

resource utilization scenarios to examine the behavior of the

proposed and existing techniques in greater detail. We repeated

each experiment 10 times and present mean, median, and

various percentiles. Due to space limitations, we share only

our experimental results in detail for m = n = 100, and

for a representative three cases from each resource utilization

scenario. Extensive results for all feasible resource utilization

variances can be accessed from the project web page [22].

1) Item demands: We model our item resource demands

on Amazon Web Services (AWS) EC2 instance types [23].

Items are randomly sampled (with replacement) from compute

optimized “C5” EC2 instance types with a diversity of resource

requirements. We use three resources: virtual CPU cores,

gigabytes of memory, and gigabits of network bandwidth. The

distribution of these resource requirements is summarized in

Table II.

Resource Minimum Median Mean Maximum

vCPUs 2 cores 36 cores 42 cores 96 cores
Memory 4 GB 72 GB 84 GB 192 GB
Network 10 Gbps 10 Gbps 15.2 Gbps 25 Gbps

TABLE II: Distribution of item (VM) resource requirements,

taken from AWS EC2 “C5” compute instances [23].

2) Bin capacities: For VMP, the collection of bins models

the state of available resources in the cloud infrastructure at

the moment of assignment. The available computing resources

may not be proportional to the collective demand of the VMs.

Some resources may be in higher demand relative to their

availability than others, leading to a bottleneck in one or

more resources. In order to evaluate heuristic performance
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under a variety of such resource bottlenecks, we control the

distribution of bin capacities to provide a predetermined re-
source utilization ratio R, which is a vector representing total

item demand divided by total bin capacity for each resource

dimension such that R =
∑

i Ii/
∑

b Cb = mμi/nμb. Bin

capacities are sampled from a uniform distribution with mean

capacity vector μb that satisfies this ratio.

We evaluate using three resource utilization conditions:

Case 1: Low — low resource utilization variance between

individual resource dimensions, where the maximum dif-

ference between any two dimensions d of the demand

ratio Rd is 10% or less.

Case 2: Medium — medium resource utilization variance,

where the maximum difference between any two dimen-

sions d of the demand ratio Rd is greater than 10% and

less than 30%.

Case 3: High — high resource utilization variance, where

the maximum difference between any two dimensions d
of the demand ratio Rd is at least 30%.

B. Heuristics

In this section, we summarize the heuristics used in our

evaluation. Since some of the previous heuristics are designed

for VBP with homogeneous bins, we generalize them to the

heterogeneous bins of VBPHB for fair comparison. In this

generalization, we sort bins with a similar technique used

to sort items. In addition, we use normalization in item

sizes and bin capacities since it improves the performance of

certain heuristics. We implemented the following heuristics for

evaluation:

Lex — Lexicographical heuristic as described by Kou et

al. [11], where items are sorted in decreasing order based

on the lexicographical comparison of each dimension. For

heterogeneous bins, we similarly generalize bin sorting to

decreasing order based on the lexicographical comparison

of bin capacities.

MaxComp — Maximum Component heuristic as described

by Kou et al. [11], where items are sorted in decreasing

order based on the resource dimension with the maximum

value. For heterogeneous bins, we similarly generalize

bin sorting to decreasing order based on the bin capacity

dimension with the maximum value.

MaxSum — Maximum Sum heuristic as described by Kou et

al. [11], where items are sorted in decreasing order based

on the sum of all resource dimensions. For heterogeneous

bins, we generalize bin sorting to decreasing order based

on the sum of all bin capacity dimensions.

Prod — Product heuristic as described by Maruyama [17],

where items are sorted in decreasing order by the product

of individual resource dimensions. For heterogeneous

bins, we similarly generalize bin sorting to decreasing

order of the product of bin capacity dimensions.

AvgSum — Average sum heuristic applied to VMP by

Panigrahy et al. [13]. Items are sorted in decreasing order

by the dot product of each item’s demand and the average

resource demand (avgdem). For heterogeneous bins, we

similarly generalize bin sorting to decreasing order of

the dot product of each bin’s capacity and avgdem. We

also tested the exponential version of this heuristic [13];

however, we do not present its results as its performance

was similar to AvgSum.

DotProd — Dot product technique as described and orig-

inally proposed by Panigrahy et al. [13], where item

ordering is performed based on a weighted dot product

of the item demand and remaining bin capacity vectors.

For heterogeneous bins, we generalize bin ordering as the

dot product with avgdem.

DP (Gabay) — Gabay’s generalization [14] of Panigrahy’s

DotProd for heterogeneous bins. For bin sorting, it

presents three variants for weight vectors: i.) no weight,

ii.) weight based on bin capacity, and iii.) weight based on

bin capacity and item demand. Our evaluation indicates

that the weight based on only bin capacity (ii) yields the

best results, so we only present this variant.

AR — Aggregated Rank from Jangiti et al. [20], where items

are first ranked for each dimension separately, and then

aggregate rankings are calculated by summing individual

rankings for each dimension [20]. We generalize this

concept to heterogeneous bins by sorting bins based on

a similar aggregated ranking of bin capacities.

MonteCarlo — Our proposed heuristic, as described in

Sec. III. We run with and without the presented squeeze

technique and use the solution with the fewer number of

bins.

Optimal — The optimal solution, as described by the integer

linear programming formulation in Sec. II-B, solved

using IBM CPLEX [21]. Due to its high execution time,

we only obtain the optimal result for the n = m = 100
problem size.

C. Experimental results

Figures 2, 3, and 4 show the performance of the heuristics

compared to the optimal values using m = n = 100, for

low (Case 1), medium (Case 2), and high (Case 3) resource

utilization variances, respectively. For each resource utilization

variance, we selected three representative ratios shown with

three digits, where the first digit represents the CPU utilization,

the second digit represents the memory utilization, and the

third digit represents the network utilization in multiples of

10%. For example, ratio 211 represents a scenario from Case 1

(low resource utilization variance), where the total requested

CPU cores is 20% utilization of the available data center,

memory utilization is 10%, and network utilization is 10%.

Extensive results including all feasible resource utilization

ratios as well as the m = n = 1000 problem size are provided

in the project website [22]. Infeasible ratios are discarded as

no heuristics, including the optimal technique, could find any

solution due to high resource contention.

In all figures, the mean is marked with a red triangle and

written above. Each distribution is represented by a standard

box and whisker plot; the bar in the middle of the box is
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(a) Resource utilization ratio: 211 (b) Resource utilization ratio: 323 (c) Resource utilization ratio: 333

Fig. 2: Performance within optimal for case 1: low resource utilization variance, n = m = 100

(a) Resource utilization ratio: 231 (b) Resource utilization ratio: 321 (c) Resource utilization ratio: 331

Fig. 3: Performance within optimal for case 2: medium resource utilization variance, n = m = 100

(a) Resource utilization ratio: 341 (b) Resource utilization ratio: 411 (c) Resource utilization ratio: 521

Fig. 4: Performance within optimal for case 3: high resource utilization variance, n = m = 100

the median, box ends are Q1 (25th percentile) and Q3 (75th

percentile), and whiskers are the farthest points within 1.5 IQR

(Q3− Q1) from the box.

For all three resource utilization cases, the proposed

MonteCarlo heuristic outperforms the other heuristics and

achieves results that are close to optimal. The performance of

MonteCarlo is not affected by the resource utilization variance,

while the other heuristics’ performances vary wildly depending

on whether their assumptions are held by the system’s re-

source utilization. For instance, Prod and MaxSum assume low

resource utilization variance as they simply perform sorting

based on the product or summation of individual resource
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dimensions, and therefore perform closer to MonteCarlo for

Case 1, shown in Figure 2. Actually, Case 1 represents an

“easy” scenario for many heuristics as they simply assume

even resource utilization. However, the performance of other

heuristics degrade compared to MonteCarlo in Figure 3 for

Case 2 with medium variance, and in Figure 4 for Case 3 with

high variance. In 21% of these cases, MonteCarlo found the

optimal result, and its performance was within 10% of optimal

for Case 1, within 3.1% of optimal for Case 2, and within

4.5% of optimal for Case 3, on average. For medium and

high variance scenarios, MonteCarlo found a solution within

2-5% of optimal.

Mean within optimal Mean bins used
Heuristic 100 bins total 100 total 1000 total

Lex 51.7% 40.4 406.4
MaxComp 52.5% 40.6 409.6
MaxSum 24.4% 34.1 342.6
Prod 20.7% 33.2 333.1
AvgSum 17.2% 32.1 321.3
DotProd 17.2% 32.1 321.3
DP (Gabay) 83.3% 46.6 465.4
AR 77.4% 45.8 469.1
MonteCarlo 9.8% 30.6 301.0
Optimal — 27.5 —

TABLE III: Number of bins used, aggregation of all ratios

Table III gives an aggregate comparison for all resource

utilization ratios. The LP formulation for the optimal solution

is solved only for the smaller n = m = 100 bin problem size

due to its prohibitive running time. In the first column, we

compare the number of bins used by each heuristic against

the optimal solution for each problem instance solved (given

as a percentage worse than optimal), then average across

all ratios. The last two columns give the average of the

number of bins used across all ratios, without comparison to

the optimal solution. Notice how the number of bins used

scales consistently to the larger (n = m = 1000) problem

size. For all possible feasible ratios (including the ones not

presented due to space limitations, but available on the project

website [22]), the performance of MonteCarlo was within 10%

of the optimal solution on average.

V. CONCLUSION

In this paper, we formally defined and formulated the server

consolidation in cloud data centers as an optimization problem

and solved it using linear programming techniques. Next, we

proposed a low cost heuristic for effective server consolidation

using a Monte Carlo method and Shannon entropy. In our eval-

uation, the proposed heuristic outperformed existing methods

by achieving within 2-5% of the optimal solution when the

resource utilization variance was medium to high, and within

10% of the optimal on average for all resource utilization

scenarios. Therefore, we believe that the proposed heuristic

can provide a tremendous value towards energy efficient cloud

data centers. Our future work includes investigating the ways

of dynamically improving the information gain of the proposed

heuristic under the scenarios where the gain is poor.
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